Log in

Optical Characterization of OMT-Coupled TES Bolometers for LiteBIRD

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Feedhorn- and orthomode transducer- (OMT) coupled transition edge sensor (TES) bolometers have been designed and micro-fabricated to meet the optical specifications of the LiteBIRD high frequency telescope (HFT) focal plane. We discuss the design and optical characterization of two LiteBIRD HFT detector types: dual-polarization, dual-frequency-band pixels with 195/280 GHz and 235/337 GHz band centers. Results show well-matched passbands between orthogonal polarization channels and frequency centers within 3% of the design values. The optical efficiency of each frequency channel is conservatively reported to be within the range 0.64\(-\)0.72, determined from the response to a cryogenic, temperature-controlled thermal source. These values are in good agreement with expectations and either exceed or are within 10% of the values used in the LiteBIRD sensitivity forecast. Lastly, we report a measurement of loss in Nb/SiN\(_x\)/Nb microstrip at 100 mK and over the frequency range 200–350 GHz, which is comparable to values previously reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Hazumi, P. Ade, A. Adler et al., SPIE 11443, 431–450 (2020)

    Google Scholar 

  2. Y. Sekimoto, P.A.R. Ade, A. Adler et al., SPIE 11453, 189–209 (2020)

    Google Scholar 

  3. L. Montier, B. Mot, P. de Bernardis et al., SPIE 11443, 451–471 (2020)

    Google Scholar 

  4. B. Westbrook, C. Raum, S. Beckman et al., SPIE 11443, 114435Q (2020)

    Google Scholar 

  5. J. E. Austermann, K. A. Aird, J. A. Beall, et al. SPIE 8452 (2012). 1210.4970

  6. R. Thornton, P. Ade, S. Aiola et al., Astrophys. J. Sup. 227(2), 21 (2016)

    Article  ADS  Google Scholar 

  7. S. Henderson, R. Allison, J. Austermann et al., J. Low Temp. Phys. 184(3), 772–779 (2016)

    Article  ADS  Google Scholar 

  8. S. Dicker, P. Ade, J. Aguirre et al., J. Low Temp. Phys. 176(5), 808–814 (2014)

    Article  ADS  Google Scholar 

  9. P. Ade, J. Aguirre, Z. Ahmed et al., J. Cos. Astro. Phys. 02, 056 (2019)

    Article  ADS  Google Scholar 

  10. H. Li, S.-Y. Li, Y. Liu et al., Natl. Sci. Rev. 6(1), 145–154 (2019)

    Article  Google Scholar 

  11. J. Hubmayr, J.E. Austermann, J.A. Beall et al., SPIE 9914, 99140V (2016)

    Google Scholar 

  12. A. Bergman, P. Ade, S. Akers et al., J. Low Temp. Phys. 5, 1075–1084 (2018)

    Article  ADS  Google Scholar 

  13. K. Rostem, C. Bennett, D. Chuss et al., SPIE 8452, 84521N (2012)

    Google Scholar 

  14. T. Essinger-Hileman, A. Ali, M. Amiri et al., SPIE 9153, 91531I (2014)

    Google Scholar 

  15. S. Walker, C.E. Sierra, J.E. Austermann et al., J. Low Temp. Phys. 199(3), 891–897 (2020)

    Article  ADS  Google Scholar 

  16. J.-M. Duval, T. Prouvé, P. Shirron, et al. J. Low Temp. Phys. 199 (2020)

  17. T. Lanting, H.-M. Cho, J. Clarke et al., Appl. Phys. Lett. 86(11), 112511 (2005)

    Article  ADS  Google Scholar 

  18. G. Jaehnig, K. Arnold, J. Austermann, et al. J. Low Temp. Phys. 199 (2020)

  19. J. McMahon, J. Beall, D. Becker et al., J. Low Temp. Phys. 167(5–6), 879–884 (2012)

    Article  ADS  Google Scholar 

  20. M. Myers et al., Appl. Phys. Lett. 86, 114103 (2005)

    Article  ADS  Google Scholar 

  21. S.M. Duff, J. Austermann, J. Beall et al., J. Low Temp. Phys. 184(3), 634–641 (2016)

    Article  ADS  Google Scholar 

  22. Y. Sakurai, T. Matsumura, N. Katayama et al., SPIE 11453, 114534E (2020)

    Google Scholar 

  23. D. Li, J. Austermann,Beall, et al., J. Low Temp. Phys. 184(1), 66–73 (2016)

  24. P.A.J. de Korte, J. Beyer, S. Deiker et al., Rev. Sci. Inst. 74, 3807–3815 (2003)

    Article  ADS  Google Scholar 

  25. K. D. Irwin and G. C. Hilton. In Cryogenic Particle Detection. Springer (2005), pp. 63–150

  26. M.L. Forman, W.H. Steel, G.A. Vanasse, JOSA 56(1), 59–63 (1966)

    Article  ADS  Google Scholar 

  27. BICEP2 Collaboration, P. A. R. Ade, R. W. Aikin, et al. Astrophys. J. 792, 1 (2014):62. 1403.4302

  28. G. Cataldo, J.A. Beall, H.-M. Cho et al., Opt. Lett. 37(20), 4200–4202 (2012)

    Article  ADS  Google Scholar 

  29. A. Endo, C. Sfiligoj, S.J.C. Yates et al., Appl. Phys. Lett. 103(3), 032601 (2013). https://doi.org/10.1063/1.4813816

    Article  ADS  Google Scholar 

  30. S. Hailey-Dunsheath, P. Barry, C. Bradford et al., J. Low Temp. Phys. 176(5), 841–847 (2014)

    Article  ADS  Google Scholar 

  31. J. Gao, A. Vayonakis, O. Noroozian, et al. In AIP Conference Proceedings, volume 1185. American Institute of Physics (2009), pp. 164–167

  32. C.L. Chang, P.A.R. Ade, Z. Ahmed et al., IEEE Trans. Appl. Sup. 25(3), 1–5 (2015)

    Article  Google Scholar 

  33. S. Hähnle, K. Kouwenhoven, B. Buijtendorp et al., Phys. Rev. Appl. 16, 014019 (2021)

    Article  ADS  Google Scholar 

  34. B. Buijtendorp, S. Vollebregt, K. Karatsu, et al. ar**v preprint ar**v:2110.03500 (2021)

  35. T. Hasebe. J. Low Temp. Phys. This Special Issue (2021)

Download references

Acknowledgements

This work is supported by NASA under grant no. 80NSSC18K0132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hubmayr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubmayr, J., Ade, P.A.R., Adler, A. et al. Optical Characterization of OMT-Coupled TES Bolometers for LiteBIRD. J Low Temp Phys 209, 396–408 (2022). https://doi.org/10.1007/s10909-022-02808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02808-7

Keywords

Navigation