Log in

Refrigeration Below 1 Kelvin

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

There is a growing demand for refrigeration techniques to reach temperatures below 1 K because these temperatures are critical for a wide range of rapidly develo** applications, mainly in the fields of quantum information science, electromagnetic radiation detection, dark matter search and condensed matter physics. A number of methods exist for realizing these temperatures, including 3He-based cooling (3He evaporation, dilution refrigeration and Pomeranchuk cooling), solid-state cooling (electron demagnetization, nuclear demagnetization and tunnel junction cooling), laser cooling and evaporative cooling among others. Here, this study presents basic principles of these methods and summarizes the corresponding advances in operating temperature ranges and cooling capacities, with the goal of identifying each method’s pros and cons. It is concluded with discussions of the challenges with these methods and key points for improving their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. A. Kasaeian, S.M. Hosseini, M. Sheikhpour et al., Applications of eco-friendly refrigerants and nanorefrigerants: A review. Renew. Sust. Energ. Rev. 96, 91–99 (2018)

    Article  Google Scholar 

  2. H.S. Cao, H.J.M. ter Brake, Progress in and outlook for cryogenic microcooling. Phys. Rev. Appl. 14, 044044 (2020)

    Article  ADS  Google Scholar 

  3. R. Radebaugh, Cryocoolers: The state of the art and recent developments. J. Phys. Condens. Matter. 21, 164219 (2009)

    Article  ADS  Google Scholar 

  4. T.D. Ladd, F. Jelezko, R. Laflamme et al., Quantum computers. Nature 464(7285), 45–53 (2010)

    Article  ADS  Google Scholar 

  5. K.Y. Tan, M. Partanen, R.E. Lake et al., Quantum-circuit refrigerator. Nat. Commun. 8, 15189 (2017)

    Article  ADS  Google Scholar 

  6. P. Camus, G. Vermeulen, A. Volpe et al., Status of the closed-cycle dilution refrigerator development for space astrophysics. J. Low Temp. Phys. 176(5–6), 1069–1074 (2014)

    Article  ADS  Google Scholar 

  7. J. Wang, C.Z. Pan, T. Zhang et al., First stirling-type cryocooler reaching lambda point of He-4 (2.17 K) and its prospect in chinese hubs satellite project. Sci. Bull. 64(4), 219–221 (2019)

    Article  Google Scholar 

  8. Z. Ahmed, D.S. Akerib, S. Arrenberg et al., Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the soudan underground laboratory. Phys. Rev. Lett. 102(1), 011301 (2009)

    Article  ADS  Google Scholar 

  9. Z. Ahmed, D.S. Akerib, S. Arrenberg et al., Dark matter search results from the CDMS ii experiment. Science 327(5973), 1619–1621 (2010)

    Article  ADS  Google Scholar 

  10. W. Hansel, P. Hommelhoff, T.W. Hansch et al., Bose-Einstein condensation on a microelectronic chip. Nature 413(6855), 498–501 (2001)

    Article  ADS  Google Scholar 

  11. L.D. Marco, G. Valtolina, K. Matsuda et al., A degenerate fermi gas of polar molecules. Science 363(6429), 853–856 (2019)

    Article  ADS  Google Scholar 

  12. M.R. Moldover, W.L. Tew, H.W. Yoon, Advances in thermometry. Nat. Phys. 12(1), 7–11 (2016)

    Article  Google Scholar 

  13. H. Preston-Thomas, The international temperature scale of 1990 (ITS-90). Metrologia 27(1), 3–10 (1990)

    Article  ADS  Google Scholar 

  14. R.L. Rusby, M. Durieux, A.L. Reesink et al., The provisional low temperature scale from 0.9 mK to 1 K, PLTS-2000. J. Low Temp. Phys. 126(1–2), 633–642 (2002)

    Article  ADS  Google Scholar 

  15. K. Gloos, P. Smeibidl, C. Kennedy et al., The Bayreuth nuclear demagnetization refrigerator. J. Low Temp. Phys. 73, 101–136 (1988)

    Article  ADS  Google Scholar 

  16. G.R. Pickett, Cooling metals to the microkelvin regime, then and now. Physica B Condens. Matter 280(1), 467–473 (2000)

    Article  ADS  Google Scholar 

  17. K. Lefmann, J.T. Tuoriniemi, K.K. Nummila et al., Neutron thermometry on polarized silver nuclei at sub-microkelvin spin temperatures. Z Phys. B Condens. Matter. 102(4), 439–447 (1997)

    Article  ADS  Google Scholar 

  18. J.T. Tuoriniemi, K.K. Nummila, K. Lefmann et al., Neutron thermometry applied to magnetization and spin-lattice relaxation measurements on silver nuclei. Z Phys. B Condens. Matter. 102(4), 433–438 (1997)

    Article  ADS  Google Scholar 

  19. P.M. Berglund, H.K. Collan, G.J. Ehnholm et al., The design and use of nuclear orientation thermometers employing Mn-54 and Co-60 nuclei in ferromagnetic hosts. J. Low Temp. Phys. 6(3–4), 357–383 (1972)

    Article  ADS  Google Scholar 

  20. O.V. Lounasmaa, Experimental Principles and Methods Below 1 K (Academic Press, New York, 1974)

    Google Scholar 

  21. D.S. Betts, Refrigeration and Thermometry Below One Kelvin (Crane Russak & Co., New York, 1976)

    Google Scholar 

  22. R. Radebaugh, Very-Low-Temperature Cooling Systems (Springer, Boston, 1983), pp. 177–255

    Google Scholar 

  23. F. Pobell, Matter and Methods at Low Temperatures, 3rd edn. (Springer, New York, 2007)

    Book  Google Scholar 

  24. Y.H. Huang, G.B. Chen, A practical vapor pressure equation for helium-3 from 0.01 K to the critical point. Cryogenics 46(12), 833–839 (2006)

    Article  ADS  Google Scholar 

  25. L. Duband, L. Clerc, E. Ercolani et al., Herschel flight models sorption coolers. Cryogenics 48(3–4), 95–105 (2008)

    Article  ADS  Google Scholar 

  26. M. Fruneau, A. Lacaze, L. Weil, Helium-3 cryostat with adsorption pump. Cryogenics 7(3), 135–137 (1967)

    Article  ADS  Google Scholar 

  27. J.P. Torre, G. Chanin, Heat switch for liquid-helium temperatures. Rev. Sci. Instrum. 55(2), 213–215 (1984)

    Article  ADS  Google Scholar 

  28. M. Sauvage, K. Okumura, U. Klaas et al., Operations and performance of the PACS instrument He-3 sorption cooler on board of the Herschel space observatory. Exp. Astron. 37(2), 397–431 (2014)

    Article  ADS  Google Scholar 

  29. L. Duband, J.M. Duval, N. Luchier et al., SPICA sub-Kelvin cryogenic chains. Cryogenics 52(4–6, SI), 145–151 (2012)

    Article  ADS  Google Scholar 

  30. L. Duband, J.M. Duval, N. Luchier, SAFARI engineering model 50 mK cooler. Cryogenics 64, 213–219 (2014)

    Article  ADS  Google Scholar 

  31. I. Catarino, C. Paine, He-3 gas gap heat switch. Cryogenics 51(1), 45–48 (2011)

    Article  ADS  Google Scholar 

  32. G. Chaudhry, G. Vermeulen, Analysis of a mixing chamber developed for use in a gravity-independent dilution refrigerator. J. Low Temp. Phys. 169, 90–110 (2012)

    Article  ADS  Google Scholar 

  33. A.T.A.M. de Waele, Basic operation of cryocoolers and related thermal machines. J. Low Temp. Phys. 164(5–6), 179–236 (2011)

    Article  ADS  Google Scholar 

  34. D.J. Cousins, S.N. Fisher, A.M. Guenault et al., An advanced dilution refrigerator designed for the new lancaster microkelvin facility. J. Low Temp. Phys. 114(5–6), 547–570 (1999)

    Article  ADS  Google Scholar 

  35. T. Prouve, H. Godfrin, C. Gianese et al., Pulse-tube dilution refrigeration below 10 mK for astrophysics. J. Low Temp. Phys. 151(3–4), 640–644 (2008)

    Article  ADS  Google Scholar 

  36. K. Uhlig, W. Hehn, He-3/He-4 dilution refrigerator precooled by Gifford-McMahon refrigerator. Cryogenics 37(5), 279–282 (1997)

    Article  ADS  Google Scholar 

  37. K. Uhlig, Dry dilution refrigerator with pulse-tube precooling. Cryogenics 44(1), 53–57 (2004)

    Article  ADS  Google Scholar 

  38. T. Prouve, H. Godfrin, C. Gianese et al., Pulse-tube dilution refrigeration below 10 mK. J. Low Temp. Phys. 148(5–6), 909–914 (2007)

    Article  ADS  Google Scholar 

  39. O.V. Lounasmaa Laboratory. http://ltl.tkk.fi/images/archive/index.html (2021)

  40. L.B. Okun, The Life and Legacy of Pomeranchuk (World Scientific, Singapore, 2003), pp. 3–20

    Google Scholar 

  41. R.T. Johnson, R. Rosenbaum, O.G. Symko et al., Adiabatic compressional cooling of He 3. Phys. Rev. Lett. 22(10), 449–451 (1969)

    Article  ADS  Google Scholar 

  42. W.P. Halperin, F.B. Rasmussen, C.N. Archie et al., Properties of melting He-3: Specific heat, entropy, latent heat, and temperature. J. Low Temp. Phys. 31(5–6), 617–698 (1978)

    Article  ADS  Google Scholar 

  43. D.S. Betts, An Introduction to Millikelvin Technology (Cambridge University, Cambridge, 1989)

    Book  Google Scholar 

  44. A. Cho, Helium-3 shortage could put freeze on low-temperature research. Science 326(5954), 778–779 (2009)

    Article  ADS  Google Scholar 

  45. Y. Zhang, J.Q. Wang, X.Q. Ke et al., Zero-thermal-hysteresis magnetocaloric effect induced by magnetic transition at a morphotropic phase boundary in Heusler Ni\(_{50}\)Mn\(_{36}\)Sb\(_{14-x}\)In\(_{x}\) alloys. Phys. Chem. Chem. Phys. 20, 18484–18490 (2018)

    Article  Google Scholar 

  46. A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and Its Applications (Institute of Physics Publishing, Bristol, 2003)

    Book  Google Scholar 

  47. W.F. Giauque, A thermodynamic treatment of certain magnetic effects. A proposed method of producing temperatures considerably below 1\(^{\circ }\) absolute. J. Am. Chem. Soc. 49(8), 1864–1870 (1927)

    Article  Google Scholar 

  48. C. Enss, S. Hunklinger, Low-Temperature Physics (Springer, Berlin, 2005)

    MATH  Google Scholar 

  49. V. Franco, J.S. Blazquez, J.J. Ipus et al., Magnetocaloric effect: From materials research to refrigeration devices. Prog. Mater. Sci. 93, 112–232 (2018)

    Article  Google Scholar 

  50. P.J. Shirron, Cooling capabilities of adiabatic demagnetization refrigerators. J. Low Temp. Phys. 148(5–6), 915–920 (2007)

    Article  ADS  Google Scholar 

  51. J.G. Sereni, Thermomagnetic properties of very heavy fermions suitable for adiabatic demagnetisation refrigeration at low temperature. Philos. Magn. 100(10), 1211–1225 (2020)

    Article  ADS  Google Scholar 

  52. B. Wolf, Y. Tsui, D. Jaiswal-Nagar et al., Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point. Proc. Natl. Acad. Sci. USA 108(17), 6862–6866 (2011)

    Article  ADS  Google Scholar 

  53. D.J. Jang, T. Gruner, A. Steppke et al., Large magnetocaloric effect and adiabatic demagnetization refrigeration with YbPt\(_{2}\)Sn. Nat. Commun. 6, 8680 (2015)

    Article  ADS  Google Scholar 

  54. Y. Tokiwa, B. Piening, H.S. Jeevan et al., Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling. Sci. Adv. 2(9), e1600835 (2016)

    Article  ADS  Google Scholar 

  55. B. Wolf, U. Tutsch, S. Dorschug et al., Magnetic cooling close to a quantum phase transition-the case of Er\(_{2}\)Ti\(_{2}\)O\(_{7}\). J. Appl. Phys. 120(14), 142112 (2016)

    Article  ADS  Google Scholar 

  56. A. Vlasov, J. Guillemette, G. Gervais et al., Magnetic refrigeration with paramagnetic semiconductors at cryogenic temperatures. Appl. Phys. Lett. 111(14), 142102 (2017)

    Article  ADS  Google Scholar 

  57. F. Gastaldo, ADea S Gabani, YbPd\(_{2}\)In: A promising candidate for strong entropy accumulation at very low temperature. Phys. Rev. B 100, 174422 (2019)

    Article  ADS  Google Scholar 

  58. J. Tuttle, E. Canavan, H. DeLee et al., Development of a space-flight ADR providing continuous cooling at 50 mK with heat rejection at 10 K. IOP Conference Series: Materials Science and Engineering 278, 012009 (2017)

  59. P.J. Shirron, Applications of the magnetocaloric effect in single-stage, multi-stage and continuous adiabatic demagnetization refrigerators. Cryogenics 62, 130–139 (2014)

    Article  ADS  Google Scholar 

  60. M.J. DiPirro, P.J. Shirron, Heat switches for ADRs. Cryogenics 62, 172–176 (2014)

    Article  ADS  Google Scholar 

  61. R.P. Bywaters, R.A. Griffin, A gas-gap thermal switch for cryogenic applications. Cryogenics 13(6), 344–349 (1973)

    Article  ADS  Google Scholar 

  62. L. Duband, D. Alsop, A. Lange et al., A Rocket-Borne 3He Refrigerator (Springer, Boston, 1990), pp. 1447–1456

    Google Scholar 

  63. E. Schuberth, Superconducting heat switch of simple design. Rev. Sci. Instrum. 55(9), 1486–1488 (1984)

    Article  ADS  Google Scholar 

  64. C.Y. Tai, Y. Wong, A.J. Rodenbush et al., A high conductance detachable heat switch for ADRs. AIP Conf. Proc. 710(1), 443–450 (2004)

    Article  ADS  Google Scholar 

  65. P.T. Timbie, G.M. Bernstein, P.L. Richards, Development of an adiabatic demagnetization refrigerator for SIRTF. Cryogenics 30(3), 271–275 (1990)

    Article  ADS  Google Scholar 

  66. J. Bartlett, G. Hardy, I. Hepburn et al., Thermal characterisation of a tungsten magnetoresistive heat switch. Cryogenics 50(9), 647–652 (2010)

    Article  ADS  Google Scholar 

  67. E.R. Canavan, M.J. Dipino, M. Jackson et al., A magnetoresistive heat switch for the continuous ADR. AIP Conf. Proc. 613(1), 1183–1190 (2002)

    Article  ADS  Google Scholar 

  68. M.J. DiPirro, P.J. Shirron, D.C. McHugh, A Liquid Helium Film Heat Pipe/Heat Switch (Springer, Boston, 1998), pp. 1497–1504

    Google Scholar 

  69. S. Abe, K. Matsumoto, Nuclear demagnetization for ultra-low temperatures. Cryogenics 62, 213–220 (2014)

    Article  ADS  Google Scholar 

  70. T. Knuuttila, Nuclear magnetism and superconductivity in rhodium. PhD thesis, Helsinki University of Technology, Espoo, Finland (2000)

  71. D. Schmoranzer, R. Gazizulin, S. Triqueneaux et al., Development of a sub-mk continuous nuclear demagnetization refrigerator. J. Low Temp. Phys. 196, 261–267 (2019)

    Article  ADS  Google Scholar 

  72. S. Triqueneaux, J. Butterworth, J. Goupy, Very low resistance Al/Cu joints for use at cryogenic temperatures. J. Low Temp. Phys. 203, 345–361 (2021)

    Article  ADS  Google Scholar 

  73. J. Tuoriniemi, Physics at its coolest. Nat. Phys. 12(1), 11–14 (2016)

    Article  Google Scholar 

  74. T.A. Knuuttila, J.T. Tuoriniemi, K. Lefmann et al., Polarized nuclei in normal and superconducting rhodium. J. Low Temp. Phys. 123(1–2), 65–102 (2001)

    Article  ADS  Google Scholar 

  75. P. Medley, D.M. Weld, H. Miyake et al., Spin gradient demagnetization cooling of ultracold atoms. Phys. Rev. Lett. 106, 195301 (2011)

    Article  ADS  Google Scholar 

  76. D.M. Weld, W. Ketterle, Towards quantum magnetism with ultracold atoms. J. Phys. Conf. Ser. 264, 012017 (2011)

    Article  Google Scholar 

  77. A.S. Oja, O.V. Lounasmaa, Nuclear magnetic ordering in simple metals at positive and negative nanokelvin temperatures. Rev. Mod. Phys. 69, 1–136 (1997)

    Article  ADS  Google Scholar 

  78. A. Ziabari, M. Zebarjadi, D. Vashaee et al., Nanoscale solid-state cooling: A review. Rep. Prog. Phys. 79(9), 095901 (2016)

    Article  ADS  Google Scholar 

  79. J.T. Muhonen, M. Matthias, J.P. Pekola, Micrometre-scale refrigerators. Rep. Prog. Phys. 75(4), 046501 (2012)

    Article  ADS  Google Scholar 

  80. P.J. Lowell, G.C. O’Neil, J.M. Underwood et al., Macroscale refrigeration by nanoscale electron transport. Appl. Phys. Lett. 102(8), 082601 (2013)

    Article  ADS  Google Scholar 

  81. M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)

    Google Scholar 

  82. F. Giazotto, T.T. Heikkila, A. Luukanen et al., Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev. Mod. Phys. 78, 217–274 (2006)

    Article  ADS  Google Scholar 

  83. H. Courtois, H.Q. Nguyen, C.B. Winkelmann et al., High-performance electronic cooling with superconducting tunnel junctions. CR Phys. 17(10), 1139–1145 (2016)

    Article  ADS  Google Scholar 

  84. M. Nahum, T.M. Eiles, J.M. Martinis, Electronic microrefrigerator based on a normal-insulator-superconductor tunnel junction. Appl. Phys. Lett. 65(24), 3123–3125 (1994)

    Article  ADS  Google Scholar 

  85. M.M. Leivo, J.P. Pekola, D.V. Averin, Efficient peltier refrigeration by a pair of normal metal-insulator-superconductor junctions. Appl. Phys. Lett. 68(14), 1996–1998 (1996)

    Article  ADS  Google Scholar 

  86. H.Q. Nguyen, M. Meschke, H. Courtois et al., Sub-50-mK electronic cooling with large-area superconducting tunnel junctions. Phys. Rev. Appl. 2, 054001 (2014)

    Article  ADS  Google Scholar 

  87. A.M. Clark, N.A. Miller, A. Williams et al., Cooling of bulk material by electron-tunneling refrigerators. Appl. Phys. Lett. 86(17), 173508 (2005)

    Article  ADS  Google Scholar 

  88. X.H. Zhang, P.J. Lowell, B.L. Wilson et al., Macroscopic subkelvin refrigerator employing superconducting tunnel junctions. Phys. Rev. Appl. 4, 024006 (2015)

    Article  ADS  Google Scholar 

  89. S. Kafanov, A. Kemppinen, Y.A. Pashkin et al., Single-electronic radio-frequency refrigerator. Phys. Rev. Lett. 103, 120801 (2009)

    Article  ADS  Google Scholar 

  90. J.P. Pekola, F. Giazotto, O. Saira, Radio-frequency single-electron refrigerator. Phys. Rev. Lett. 98, 037201 (2007)

    Article  ADS  Google Scholar 

  91. P.A. Fisher, J.N. Ullom, M. Nahum, High-power on-chip microrefrigerator based on a normal-metal/insulator/superconductor tunnel junction. Appl. Phys. Lett. 74(18), 2705–2707 (1999)

    Article  ADS  Google Scholar 

  92. A. Hosseinkhani, G. Catelani, Proximity effect in normal-metal quasiparticle traps. Phys. Rev. B 97, 054513 (2018)

    Article  ADS  Google Scholar 

  93. J.P. Pekola, T.T. Heikkilä, A.M. Savin et al., Limitations in cooling electrons using normal-metal-superconductor tunnel junctions. Phys. Rev. Lett. 92, 056804 (2004)

    Article  ADS  Google Scholar 

  94. S. Rajauria, L.M.A. Pascal, P. Gandit et al., Efficiency of quasiparticle evacuation in superconducting devices. Phys. Rev. B 85, 020505 (2012)

    Article  ADS  Google Scholar 

  95. P.J. Lowell, G.C. O’Neil, J.M. Underwood et al., Andreev reflections in micrometer-scale normal metal-insulator-superconductor tunnel junctions. J. Low Temp. Phys. 167, 392–397 (2012)

    Article  ADS  Google Scholar 

  96. F. Giazotto, F. Taddei, R. Fazio et al., Ultraefficient cooling in ferromagnet-superconductor microrefrigerators. Appl. Phys. Lett. 80(20), 3784–3786 (2002)

    Article  ADS  Google Scholar 

  97. S. Kawabata, A.S. Vasenko, A. Ozaeta et al., Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions. J. Magn. Magn. Mater 383, 157–161 (2015)

    Article  ADS  Google Scholar 

  98. O. Quaranta, P. Spathis, F. Beltram et al., Cooling electrons from 1 to 04 K with V-based nanorefrigerators. Appl. Phys. Lett. 98(3), 032501 (2011)

    Article  ADS  Google Scholar 

  99. M. Camarasa-Gomez, A.D. Marco, F.W.J. Hekking et al., Superconducting cascade electron refrigerator. Appl. Phys. Lett. 104(19), 192601 (2014)

    Article  ADS  Google Scholar 

  100. A.M. Savin, M. Prunnila, P.P. Kivinen et al., Efficient electronic cooling in heavily doped silicon by quasiparticle tunneling. Appl. Phys. Lett. 79(10), 1471–1473 (2001)

    Article  ADS  Google Scholar 

  101. D. Gunnarsson, J.S. Richardson-Bullock, M.J. Prest et al., Interfacial engineering of semiconductor-superconductor junctions for high performance micro-coolers. Sci. Rep. 5, 17398 (2015)

    Article  ADS  Google Scholar 

  102. W.D. Phillips, Nobel lecture: Laser cooling and trap** of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998)

    Article  ADS  Google Scholar 

  103. M.R. Tarbutt, Laser cooling of molecules. Contemp. Phys. 59(4), 356–376 (2018)

    Article  ADS  Google Scholar 

  104. P.D. Lett, W.D. Phillips, S.L. Rolston et al., Optical molasses. J. Opt. Soc. Am. B 6(11), 2084–2107 (1989)

    Article  ADS  Google Scholar 

  105. P.N. Melentiev, P.A. Borisov, V.I. Balykin et al., Zeeman laser cooling of \(^{85}\)Rb atoms in transverse magnetic field. J. Exp. Theor. Phys. 98, 667–677 (2004)

    Article  ADS  Google Scholar 

  106. T.W. Hansch, A.L. Schawlow, Cooling of gases by laser radiation. Opt. Commun. 13(1), 68–69 (1975)

    Article  ADS  Google Scholar 

  107. D.J. Wineland, H.G. Dehmelt, Proposed 1014 delta upsilon less than upsilon laser fluorescence spectroscopy on t1+ mono-ion oscillator iii. Bull. Am. Phys. Soc. 20(4), 637 (1975)

    Google Scholar 

  108. A. Ashkin, Trap** of atoms by resonance radiation pressure. Phys. Rev. Lett. 40, 729–732 (1978)

    Article  ADS  Google Scholar 

  109. W.D. Phillips, H. Metcalf, Laser deceleration of an atomic beam. Phys. Rev. Lett. 48, 596–599 (1982)

    Article  ADS  Google Scholar 

  110. S. Chu, L. Hollberg, J.E. Bjorkholm et al., Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55, 48–51 (1985)

    Article  ADS  Google Scholar 

  111. S. Chu, J.E. Bjorkholm, A. Ashkin et al., Experimental observation of optically trapped atoms. Phys. Rev. Lett. 57, 314–317 (1986)

    Article  ADS  Google Scholar 

  112. P.D. Lett, R.N. Watts, C.I. Westbrook et al., Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 61, 169–172 (1988)

    Article  ADS  Google Scholar 

  113. J. Dalibard, C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6(11), 2023–2045 (1989)

    Article  ADS  Google Scholar 

  114. J.Z. Hu, A. Urvoy, Z. Vendeiro et al., Creation of a Bose-condensed gas of \(^{87}\)Rb by laser cooling. Science 358(6366), 1078–1080 (2017)

    Article  ADS  Google Scholar 

  115. S.E. Hamann, D.L. Haycock, G. Klose et al., Resolved-sideband Raman cooling to the ground state of an optical lattice. Phys. Rev. Lett. 80, 4149–4152 (1998)

    Article  ADS  Google Scholar 

  116. A.J. Kerman, V. Vuletic, C. Chin et al., Beyond optical molasses: 3D Raman sideband cooling of atomic Cesium to high phase-space density. Phys. Rev. Lett. 84, 439–442 (2000)

    Article  ADS  Google Scholar 

  117. V. Vuletic, C. Chin, A.J. Kerman et al., Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities. Phys. Rev. Lett. 81, 5768–5771 (1998)

    Article  ADS  Google Scholar 

  118. A. Urvoy, Z. Vendeiro, J. Ramette et al., Direct laser cooling to Bose-Einstein condensation in a dipole trap. Phys. Rev. Lett. 122, 203202 (2019)

    Article  ADS  Google Scholar 

  119. W. McGehee, W. Zhu, D. Barker et al., Magneto-optical trap** using planar optics. New J. Phys. 23, 013021 (2021)

    Article  ADS  Google Scholar 

  120. D. McCarron, Laser cooling and trap** molecules. J. Phys. B 51(21), 212001 (2018)

    Article  Google Scholar 

  121. D.L. Andrews, D.S. Bradshaw, Laser cooling and trap** of atoms. In: Optical Nanomanipulation, 2053–2571, Morgan & Claypool Publishers, pp 4–1 to 4–5 (2016)

  122. H.J. Metcalf, P. van der Straten, Evaporative Cooling (Springer, New York, 1999), pp. 165–175

    Google Scholar 

  123. W. Ketterle, N.J. Van Druten, Evaporative Cooling of Trapped Atoms Advances in Atomic, Molecular, and Optical Physics, vol. 37 (Academic Press, Cambridge, 1996), pp. 181–236

    Google Scholar 

  124. M.H. Anderson, J.R. Ensher, M.R. Matthews et al., Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269(5221), 198–201 (1995)

    Article  ADS  Google Scholar 

  125. J.D. Weinstein, R. deCarvalho, C.I. Hancox et al., Evaporative cooling of atomic chromium. Phys. Rev. A 65, 021604 (2002)

    Article  ADS  Google Scholar 

  126. L.D. Augustovicova, J.L. Bohn, Ultracold collisions of polyatomic molecules: CaOH. New J. Phys. 21(10), 103022 (2019)

    Article  ADS  Google Scholar 

  127. M.L. Gonzalez-Martinez, J.M. Hutson, Ultracold hydrogen atoms: A versatile coolant to produce ultracold molecules. Phys. Rev. Lett. 111, 203004 (2013)

    Article  ADS  Google Scholar 

  128. J. Lim, M.D. Frye, J.M. Hutson et al., Modeling sympathetic cooling of molecules by ultracold atoms. Phys. Rev. A 92, 053419 (2015)

    Article  ADS  Google Scholar 

  129. H. Son, J.J. Park, W. Ketterle et al., Collisional cooling of ultracold molecules. Nature 580(7802), 197–200 (2020)

    Article  ADS  Google Scholar 

  130. C.G. Townsend, N.H. Edwards, C.J. Cooper et al., Phase-space density in the magneto-optical trap. Phys. Rev. A 52, 1423–1440 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Bei**g Natural Science Foundation (Grant No. 3212019) and National Natural Science Foundation of China (Grant No. 52076115). The author is grateful to Prof. Marcel ter Brake at University of Twente and Dr. Henri Godfrin at CNRS-Institut Néel for their guidance into the field of sub-Kelvin refrigeration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haishan Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H. Refrigeration Below 1 Kelvin. J Low Temp Phys 204, 175–205 (2021). https://doi.org/10.1007/s10909-021-02606-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02606-7

Keywords

Navigation