Log in

Quantum Tunneling in the \(\alpha -T_3\) Model with an Effective Mass Term

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the quantum tunneling properties through a square potential barrier in the \(\alpha -T_3\) model with an effective mass term. The additional mass term can be induced by the effective magnetic field or the site energy difference on different sublattices, in which the flat band is located at the center or edge of the band gap band, respectively. The linear dispersion in the \(\alpha -T_3\) model is modified in the presence of the mass term, leading to the destroying of the Klein tunneling for the normal incidence. It is demonstrated that the additional mass term in general suppresses the transmission. When the flat band is located at the band edge, the super-Klein tunneling and the resonant tunneling are considerably suppressed with the increase in the energy gap. For the dice lattice that \(\alpha =1\), the super-Klein tunneling is preserved when the flat band is located at the center of the band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.R. Setare, D. Jahani, Klein tunneling of massive Dirac fermions in single-layer graphene. Physica B 405(5), 1433–1436 (2010)

    ADS  Google Scholar 

  2. P.E. Allain, J.-N. Fuchs, Klein tunneling in graphene: optics with massless electrons. Eur. Phys. J. B 83(3), 301 (2011)

    ADS  Google Scholar 

  3. E. Illes, Properties of the \(\alpha \)-\({T}_3\)Model. Ph.D. Thesis (2017)

  4. A. Iurov, G. Gumbs, D. Huang, Peculiar electronic states, symmetries, and berry phases in irradiated \(\alpha \)-\({T}_3\) materials. Phys. Rev. B 99(20), 205135 (2019)

    ADS  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    ADS  Google Scholar 

  6. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)

    ADS  Google Scholar 

  7. Y. **e, Y. Tan, A.W. Ghosh, Spintronic signatures of Klein tunneling in topological insulators. Phys. Rev. B 96(20), 205151 (2017)

    ADS  Google Scholar 

  8. X. Yafang, G. **, Omnidirectional transmission and reflection of pseudospin-1 Dirac fermions in a Lieb superlattice. Phys. Lett. A 378(47), 3554–3560 (2014)

    ADS  MATH  Google Scholar 

  9. X. Hong-Ya, Y.-C. Lai, Pseudospin-1 wave scattering that defies chaos \(Q\)-spoiling and Klein tunneling. Phys. Rev. B 99(23), 235403 (2019)

    ADS  Google Scholar 

  10. L. Wang, D.-X. Yao, Coexistence of spin-1 fermion and Dirac fermion on the triangular kagome lattice. Phys. Rev. B 98(16), 161403 (2018)

    ADS  Google Scholar 

  11. B. Dey, T.K. Ghosh, Photoinduced valley and electron-hole symmetry breaking in \(\alpha \)-\({T}_3\) lattice: the role of a variable Berry phase. Phys. Rev. B 98(7), 075422 (2018)

    ADS  Google Scholar 

  12. H.-F. Lü, Y.-H. Deng, S.-S. Ke, Y. Guo, H.-W. Zhang, Quantum impurity in topological multi-Weyl semimetals. Phys. Rev. B 99(11), 115109 (2019)

    ADS  Google Scholar 

  13. V. Hung Nguyen, J.-C. Charlier, Klein tunneling and electron optics in Dirac–Weyl fermion systems with tilted energy dispersion. Phys. Rev. B 97(23), 235113 (2018)

    ADS  Google Scholar 

  14. T. Ozawa, A. Amo, J. Bloch, I. Carusotto, Klein tunneling in driven-dissipative photonic graphene. Phys. Rev. A 96(1), 013813 (2017)

    ADS  Google Scholar 

  15. J.Y. Vaishnav, C.W. Clark, Observing Zitterbewegung with ultracold atoms. Phys. Rev. Lett. 100(15), 153002 (2008)

    ADS  Google Scholar 

  16. B. Dey, T.K. Ghosh, Floquet topological phase transition in the \(\alpha \)-\({T}_3\) lattice. Phys. Rev. B 99(20), 205429 (2019)

    ADS  Google Scholar 

  17. L. Chen, J. Zuber, Z. Ma, C. Zhang, Nonlinear optical response of the \(\alpha -{T}_3\) model due to the nontrivial topology of the band dispersion. Phys. Rev. B 100(3), 035440 (2019)

    ADS  Google Scholar 

  18. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415(6867), 39 (2002)

    ADS  Google Scholar 

  19. M.G.G. Abad, M. Valinezhad, M. Mahmoudi, Enhanced nonlinear magneto-optical rotation in cold atoms: a theoretical study. Sci. Rep. 9(1), 6312 (2019)

    ADS  Google Scholar 

  20. F. Wang, Y. Ran, Nearly flat band with Chern number \(c= 2\) on the dice lattice. Phys. Rev. B 84(24), 241103 (2011)

    ADS  Google Scholar 

  21. D. Bercioux, D.F. Urban, H. Grabert, W. Häusler, Massless Dirac–Weyl fermions in a \({\cal{T}}_3\) optical lattice. Phys. Rev. A 80(6), 063603 (2009)

    ADS  Google Scholar 

  22. J.D. Malcolm, E.J. Nicol, Magneto-optics of massless Kane fermions: role of the flat band and unusual Berry phase. Phys. Rev. B 92(3), 035118 (2015)

    ADS  Google Scholar 

  23. D.D. Edwall, J.S. Chen, J. Bajaj, E.R. Gertner, MOCVD Hg1-xCdxTe/GaAs for IR detectors. Semicond. Sci. Technol. 5(3S), S221 (1990)

    ADS  Google Scholar 

  24. Y. Betancur-Ocampo, V. Gupta, Perfect transmission of 3D massive Kane fermions in HgCdTe Veselago lenses. J. Phys. Condens. Matter. 30(3), 035501 (2017)

    ADS  Google Scholar 

  25. E. Illes, E.J. Nicol, Klein tunneling in the \(\alpha -{T}_3\) model. Phys. Rev. B 95(23), 235432 (2017)

    ADS  Google Scholar 

  26. K. Kim, Super-Klein tunneling of Klein–Gordon particles. Results Phys. 12, 1391–1394 (2019)

    ADS  Google Scholar 

  27. A. Jellal, E.B. Choubabi, H. Bahlouli, A. Aljaafari, Transport properties through double barrier structure in graphene. J. Low Temp. Phys. 168(1), 40–56 (2012)

    ADS  Google Scholar 

  28. F. Guinea, Models of electron transport in single layer graphene. J. Low Temp. Phys. 153(5), 359–373 (2008)

    ADS  Google Scholar 

  29. T. Biswas, T.K. Ghosh, Dynamics of a quasiparticle in the \(\alpha \)-\({T}_3\) model: role of pseudospin polarization and transverse magnetic field on zitterbewegung. J. Phys. Condens. Matter. 30(7), 075301 (2018)

    ADS  Google Scholar 

  30. Á.D. Kovács, G. Dávid, B. Dóra, J. Cserti, Frequency-dependent magneto-optical conductivity in the generalized \(\alpha -{T}_3\) model. Phys. Rev. B 95(3), 035414 (2017)

    ADS  Google Scholar 

  31. Y. Sun, A.-M. Wang, Magneto-optical conductivity of double Weyl semimetals. Phys. Rev. B 96(8), 085147 (2017)

    ADS  Google Scholar 

  32. T. Biswas, T.K. Ghosh, Magnetotransport properties of the \(\alpha -{T}_3\) model. J. Phys. Condens. Matter. 28(49), 495302 (2016)

    Google Scholar 

  33. E. Illes, E.J. Nicol, Magnetic properties of the \(\alpha \)-\({T}_3\) model: Magneto-optical conductivity and the Hofstadter butterfly. Phys. Rev. B 94(12), 125435 (2016)

    ADS  Google Scholar 

  34. X. Yong, L.-M. Duan, Unconventional quantum Hall effects in two-dimensional massive spin-1 fermion systems. Phys. Rev. B 96(15), 155301 (2017)

    ADS  Google Scholar 

  35. A. Raoux, M. Morigi, J.-N. Fuchs, F. Piéchon, G. Montambaux, From dia-to paramagnetic orbital susceptibility of massless fermions. Phys. Rev. Lett. 112(2), 026402 (2014)

    ADS  Google Scholar 

  36. J.J. Wang, S. Liu, J. Wang, J.-F. Liu, Valley-coupled transport in graphene with Y-shaped Kekulé structure. Phys. Rev. B 98(19), 195436 (2018)

    ADS  Google Scholar 

  37. J. Romhányi, K. Penc, R. Ganesh, Hall effect of triplons in a dimerized quantum magnet. Nat. Commun. 6, 6805 (2015)

    ADS  Google Scholar 

  38. R. Shen, L.B. Shao, B. Wang, D.Y. **ng, Single Dirac cone with a flat band touching on line-centered-square optical lattices. Phys. Rev. B 81(4), 041410 (2010)

    ADS  Google Scholar 

  39. X. Changqing, G. Wang, Z.H. Hang, J. Luo, C.T. Chan, Y. Lai, Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture. Sci. Rep. 5, 18181 (2015)

    ADS  Google Scholar 

  40. C. Shang, Y. Zheng, B.A. Malomed, Weyl solitons in three-dimensional optical lattices. Phys. Rev. A 97(4), 043602 (2018)

    ADS  Google Scholar 

  41. D. Walkup, J.A. Stroscio, Helical level structure of Dirac potential wells. Phys. Rev. B 96(20), 201409 (2017)

    ADS  Google Scholar 

  42. D.A. Khokhlov, A.L. Rakhmanov, A.V. Rozhkov, Scattering on a rectangular potential barrier in nodal-line Weyl semimetals. Phys. Rev. B 97(23), 235418 (2018)

    ADS  Google Scholar 

  43. B. Dóra, J. Kailasvuori, R. Moessner, Lattice generalization of the Dirac equation to general spin and the role of the flat band. Phys. Rev. B 84, 195422 (2011)

    ADS  Google Scholar 

  44. D.F. Urban, D. Bercioux, M. Wimmer, W. Häusler, Barrier transmission of Dirac-like pseudospin-one particles. Phys. Rev. B 84, 115136 (2011)

    ADS  Google Scholar 

  45. R. Zhu, P.M. Hui, Shot noise and fano factor in tunneling in three-band pseudospin-1 Dirac–Weyl systems. Phys. Rev. A 381(23), 1971–1975 (2017)

    Google Scholar 

  46. R. Shen, L.B. Shao, B. Wang, D.Y. **ng, Single Dirac cone with a flat band touching on line-centered-square optical lattices. Phys. Rev. B 81, 041410 (2010)

    ADS  Google Scholar 

  47. A. Fang, Z.Q. Zhang, S.G. Louie, C.T. Chan, Nonuniversal critical behavior in disordered pseudospin-1 systems. Phys. Rev. B 99(1), 014209 (2019)

    ADS  Google Scholar 

  48. L.L. Chang, L. Esaki, R. Tsu, Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24(12), 593–595 (1974)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China under Grant Nos. 61474018, 11574173 and 61505023, the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2019J100) and the Open Project of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF201709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **n Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Ke, SS., Du, XW. et al. Quantum Tunneling in the \(\alpha -T_3\) Model with an Effective Mass Term. J Low Temp Phys 199, 1332–1343 (2020). https://doi.org/10.1007/s10909-020-02440-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02440-3

Keywords

Navigation