Log in

Count Rate Optimizations for TES Detectors at a Femtosecond X-ray Laser

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Transition-edge sensor microcalorimeters have found success as X-ray detectors at synchrotron light-sources, due to a unique combination of high collecting area and good energy resolution. However, the upcoming generation of free-electron lasers (FELs), such as the Linac Coherent Light Source II, is designed to deliver more than \(10^{10}\) photons in a 100 fs pulse at a 100 kHz rate, potentially leading to severe pulse-pileup issues. We will demonstrate that, for most relevant science cases, it is possible to mitigate pulse pile-up using simple X-ray filters in a way that takes advantage of the substantial increase in X-ray flux at modern FELs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. If \(f \tau\) is less than one, there is no risk of pile-up from one pulse to the next. Then, the only pileup problem arises from multiple photons arriving in the same pulse.

  2. Note that re-fluorescence from the beryllium is not problematic, because the beryllium emission line at 100 eV will be blocked by the vacuum window and IR-blocking aluminum, which have a combined transmittance below \(10^{-4}\) at 100 ev.

References

  1. J. Yano, V. Yachandra, Chem. Rev. 114, 4175 (2014). https://doi.org/10.1021/cr4004874

    Article  Google Scholar 

  2. H. Östrom, H. Öberg, H. **n et al., Science 347(6225), 978–981 (2015). https://doi.org/10.1126/science.1260168

    Article  ADS  Google Scholar 

  3. M.W. Mara, R.G. Hadt, M.E. Reinhard et al., Science 356(6344), 1276–1280 (2017). https://doi.org/10.1126/science.aam6203

    Article  ADS  Google Scholar 

  4. J. Uhlig, W.B. Doriese, J.W. Fowler et al., J. Synchrotron Rad. 22, 766–775 (2015). https://doi.org/10.1107/S1600577515004312

    Article  Google Scholar 

  5. L. Miaja-Avila, G.C. O’Neil, Y.I. Joe et al., Phys. Rev. X 6(3), 31047 (2016). https://doi.org/10.1103/PhysRevX.6.031047

    Article  Google Scholar 

  6. C.J. Titus, M.L. Baker, S.J. Lee et al., J. Chem. Phys. 147, 214201 (2017). https://doi.org/10.1063/1.5000755

    Article  ADS  Google Scholar 

  7. D. Li, B.K. Alpert, D.T. Becker et al., J. Low Temp. Phys. 193(5–6), 1287–1297 (2018). https://doi.org/10.1007/s10909-018-2053-6

    Article  ADS  Google Scholar 

  8. M. Kubin, J. Kern, S. Gul et al., Struct. Dyn. 4, 54307 (2017). https://doi.org/10.1063/1.4986627

    Article  Google Scholar 

  9. K. Kunnus, I. Rajkovic, S. Schreck et al., Rev. Sci. Instrum. 83, 123109 (2012). https://doi.org/10.1063/1.4772685

    Article  ADS  Google Scholar 

  10. K.L. Bren, R. Eisenberg, H.B. Gray, PNAS 112(43), 13123–13127 (2015). https://doi.org/10.1073/pnas.1515704112

    Article  ADS  Google Scholar 

  11. A.B. Stickrath, M.W. Mara, J.V. Lockard et al., J. Phys. Chem. B 117(16), 4705–4712 (2013). https://doi.org/10.1021/jp3086705

    Article  Google Scholar 

  12. K.M. Morgan, D.T. Becker, D.A. Bennett et al., IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019). https://doi.org/10.1109/TASC.2019.2903032

    Article  Google Scholar 

  13. J.W. Fowler, B.K. Alpert, W.B. Doriese et al., Astrophys. J. Suppl. Ser. 219(2), 35 (2015). https://doi.org/10.1088/0067-0049/219/2/35

    Article  ADS  Google Scholar 

  14. B.L. Henke, E.M. Gullikson, J.C. Davis, Atomic Data and Nuclear Data Tables 54(2), 181-342 (1993). http://henke.lbl.gov/optical_constants/index.html

  15. S.-J. Lee, C.J. Titus, R. Alonso Mori et al., Rev. Sci. Instrum. 90, 113101 (2019). https://doi.org/10.1063/1.5119155

    Article  ADS  Google Scholar 

  16. Y.-D. Chuang, Y.-C. Shao, A. Cruz et al., Rev. Sci. Instrum. 88, 13110 (2017). https://doi.org/10.1063/1.4974356

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences proposal No. 100487. The authors would like to thank Leland Gee and Augustin Braun for providing the hemoglobin sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Titus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titus, C.J., Li, D., Alpert, B.K. et al. Count Rate Optimizations for TES Detectors at a Femtosecond X-ray Laser. J Low Temp Phys 199, 1038–1045 (2020). https://doi.org/10.1007/s10909-020-02379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02379-5

Keywords

Navigation