Log in

Thermal Model and Optimization of a Large Crystal Detector Using a Metallic Magnetic Calorimeter

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We established a simple thermal model of the heat flow in a large crystal detector designed for a neutrinoless double beta decay experiment. The detector is composed of a CaMoO\(_{4}\) crystal and a metallic magnetic calorimeter (MMC). The thermal connection between the absorber and the sensor consists of a gold film evaporated on the crystal surface and gold bonding wires attached to this film and the MMC sensor. The model describes athermal and thermal processes of heat flow to the gold film. A successive experiment based on optimization calculations of the area and thickness of the gold film showed a significant improvement in the size and rise-time of the measured signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Enss (ed.) Cryogenic Particle Detection, (Springer, Berlin, 2005).

  2. D.S. Akerib et al., Phys. Rev. D 72, 052009 (2005)

    Article  ADS  Google Scholar 

  3. H.J. Kim et al., IEEE Trans. Nucl. Sci. 57, 1475 (2010)

    Article  ADS  Google Scholar 

  4. S. Rahaman et al., Phys. Lett. B 662, 111 (2008)

    Article  ADS  Google Scholar 

  5. A. Fleischmann et al., AIP Conf. Proc. 571, 1185 (1009)

    Google Scholar 

  6. S.J. Lee et al., Astropart. Phys. 34, 732 (2011)

    Article  ADS  Google Scholar 

  7. A. Burck et al., J. Low Temp. Phys. 151, 337 (2008)

    Article  ADS  Google Scholar 

  8. S.J. Lee, Ph.D. Dissertation, Seoul National University, 2012.

  9. Y.H. Kim et al., Nucl. Instrum. Meth. A 520, 208 (2004)

    Article  ADS  Google Scholar 

  10. E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989)

    Article  ADS  Google Scholar 

  11. Y.S. Yoon et al., J. Low Temp. Phys. 167, 280 (2012)

    Article  ADS  Google Scholar 

  12. F. Pröbst et al., J. Low Temp. Phys 100, 69 (1995)

    Article  ADS  Google Scholar 

  13. V.B. Mikhailik et al., Nucl. Instrum. Meth. A 583, 350 (2007)

    Article  ADS  Google Scholar 

  14. A.N. Annenkov et al., Nucl. Instrum. Meth. A 584, 334 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2011-220-C00006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, G.B., Choi, S., Jang, Y.S. et al. Thermal Model and Optimization of a Large Crystal Detector Using a Metallic Magnetic Calorimeter. J Low Temp Phys 176, 637–643 (2014). https://doi.org/10.1007/s10909-014-1139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1139-z

Keywords

Navigation