Log in

Particle Image Velocimetry Studies of Counterflow Heat Transport in Superfluid Helium II

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Heat is transported in helium II by a mechanism known as thermal counterflow where the liquid behaves as if it consists of two fluid components: the viscous normal fluid that carries the entropy and the inviscid superfluid that flows in opposition to conserve mass and momentum. Although the two fluid model has been successful at interpreting a number of unique transport processes in helium II, only recently has there been a significant effort to actually observe the associated fluid component motion. We have previously shown that Particle Image Velocimetry (PIV) can be used to visualize the motion of micron scale particles in helium II in response to thermal counterflow. These studies have led to some exceptional observations. The present paper summarizes our recent PIV experimental results on counterflow in helium II including the observed flow patterns around a cylinder and through a rectangular channel with backward facing step change in cross section, configurations which have been studied extensively in classical fluid mechanics. In addition to contributing to the fundamental understanding of helium II turbulence, as is discussed in the last section of the article, we show how this work also has a potential application in micron-scale particle classification and separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Landau, E.M. Lifshitz, Fluid Mechanics. Pergamon Press, Oxford (1987), Chap. XVI

    MATH  Google Scholar 

  2. D.Y. Chung, P.R. Critchlow, Phys. Rev. Lett. 14, 892 (1965)

    Article  ADS  Google Scholar 

  3. K. Chopra, J. Brown, Phys. Rev. 108, 157 (1957)

    Article  ADS  Google Scholar 

  4. F. Bielert, G. Stramm, Cryogenics 33, 938 (1993)

    Article  Google Scholar 

  5. M. Murakami, N. Ichikawa, Cryogenics 29, 438 (1989)

    Article  ADS  Google Scholar 

  6. R.J. Donnelly et al., J. Low Temp. Phys. 126, 327 (2002)

    Article  Google Scholar 

  7. T. Zhang, S.W. Van Sciver, J. Low Temp. Phys. 138, 865 (2004)

    Article  Google Scholar 

  8. T. Zhang, S.W. Van Sciver, Phys. Fluids 16, 99 (2004)

    Article  ADS  Google Scholar 

  9. T. Zhang, S.W. Van Sciver, Nat. Phys. 1, 36 (2005)

    Article  Google Scholar 

  10. G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Nature 441, 558 (2006)

    Article  ADS  Google Scholar 

  11. K. Harada, M. Murakami, Adv. Cryog. Eng. 51B, 1677 (2006)

    Google Scholar 

  12. T. Zhang, D. Celik, S.W. Van Sciver, J. Low Temp. Phys. 134, 985 (2004)

    Article  Google Scholar 

  13. D.R. Poole, C.F. Barenghi, Y. Sergeev, W. Vinen, Phys. Rev. B 71, 064514 (2005)

    Article  ADS  Google Scholar 

  14. Y. Sergeev, C. Barenghi, D. Kivotides, W. Vinen, Phys. Rev. B 73, 052502 (2006)

    Article  ADS  Google Scholar 

  15. S. Fuzier, S.W. Van Sciver, T. Zhang, in 24th Intern. Conf. on Low Temp. Phys., ed. by Y. Takano, et al. (Am. Inst. Phys., 2006), p. 203

  16. H. Schlichting, Boundary Layer Theory, 7th edn. (McGraw–Hill, New York, 1979), Chap. 2

    MATH  Google Scholar 

  17. B. Armaly, F. Durst, J. Pereira, B. Schoenung, J. Fluid Mech. 127, 473 (1983), 23

    Article  ADS  Google Scholar 

  18. S. Fuzier, S.W. Van Sciver, N. Kalechofsky, in 5th World Congress on Particle Technology, Orlando, FL, April 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Van Sciver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Sciver, S.W., Fuzier, S. & Xu, T. Particle Image Velocimetry Studies of Counterflow Heat Transport in Superfluid Helium II. J Low Temp Phys 148, 225–233 (2007). https://doi.org/10.1007/s10909-007-9375-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9375-0

PACS

Navigation