Log in

Direct Measurements of Quantum Turbulence Induced by Second Sound Shock Pulses in Helium II

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Direct measurements in a wide channel of He II at 1.7 K are presented of quantum turbulence induced by second sound shock (SSS) pulses. Such pulses are moving volume sources of power flux density, with the Vinen and Hall equation not directly applicable. Instead, a fit based on an electric field energy analogy is introduced, a leaky capacitor fit (LCF), for the purpose of extracting a growth and decay characterization of the apparent induced quantum turbulence from the measurements, with the fit parameters tabulated. Also, an explicit energy account is taken of the quantum turbulence as well as of the inducing SSS pulses. Plotting pulse energy transport fraction versus initial energy flux density, a breakpoint energy flux density is proposed for the onset of Gorter–Mellink thermal diffusion in the presence and absence of a quantum turbulence background. This is in contrast with a breakpoint power flux density discussed by previous researchers. This breakpoint energy flux density is about 75 J/m 2 in the absence of a background, in quiescent He II at 1.7 K, and is thus a characteristic of all SSS pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Khalatnikov (1965) An Introduction to the Theory of Superfluidity W. A. Benjamin New York

    Google Scholar 

  2. A. J. Dessler W. M. Fairbank (1956) Phys. Rev. 104 6 Occurrence Handle10.1103/PhysRev.104.6

    Article  Google Scholar 

  3. J. R. Torczynski (1984) Phys. Fluids 27 2636 Occurrence Handle10.1063/1.864555

    Article  Google Scholar 

  4. D. K. Hilton S. W. Van Sciver (2003) ArticleTitle23rd International Conference on Low Temperature Physics, Hiroshima (20–27 August 2002) Physica B 329-333 228

    Google Scholar 

  5. L. D. Landau (1941) J. Phys. 5 71

    Google Scholar 

  6. R. J. Donnelly (1991) Quantized Vortices in Helium II Cambridge University Press Cambridge

    Google Scholar 

  7. L. D. Landau E. M. Lifshitz (1987) Fluid Mechanics EditionNumber2 Pergamon Press Oxford

    Google Scholar 

  8. Feynman R. P. (1955). in progress in Low Temperature Physics, Vol. I, C. J. Gorter, (ed.), pp. 17–53

  9. C. J. Gorter J. H. Mellink (1949) Physica XV 285 Occurrence Handle10.1016/0031-8914(49)90105-6

    Article  Google Scholar 

  10. W. F. Vinen, Proc. Roy. Soc. A240, 114 (1957), A240, 128 (1957), 242, 493 (1957), 243, 400 (1958).

  11. D. K. Hilton, Ph.D. Dissertation, Florida State University (2003), <http://etd.lib.fsu.edu/theses/available/etd-09012003-002313/>.

  12. Nemirovskii S. K., nemir@itp.nsc.ru (private communication).

  13. T. N. Turner (1983) Phys Fluids 26 3227 Occurrence Handle10.1063/1.864097

    Article  Google Scholar 

  14. S. K. Nemirovskii A. N. Tsoi (1989) Cryogenics 29 985 Occurrence Handle10.1016/0011-2275(89)90246-4

    Article  Google Scholar 

  15. G. Laguna (1976) Cryogenics 16 IssueID4 241

    Google Scholar 

  16. D. K. Hilton S. W. Van Sciver (2001) ArticleTitleU.S.–Japan Joint Seminar on Innovative Measurement Techniques in Cryogenics, Tallahassee (3–6 December 2000) Cryogenics 41 347 Occurrence Handle10.1016/S0011-2275(01)00091-1

    Article  Google Scholar 

  17. R. W. Gammon, (301) 405-4791, rg2@umail.umd.edu (private communication)

  18. D. K. Hilton, M. R. Smith, and S. W. Van Sciver, Cryogenic Engineering Conference, Montreal, (12–16 July 1999), Q. S. Shu, et al., (eds.), Adv. Cryo. Eng., 45B, 1025 (2000).

  19. S. K. Nemirovskii A. N. Tsoi (1982) J.E.T.P. Lett. 35 IssueID6 286

    Google Scholar 

  20. M. V. Schwerdtner G. Stamm D. W. Schmidt (1989) Phys. Rev. Lett. 63 IssueID1 39 Occurrence Handle10040427

    PubMed  Google Scholar 

  21. S. K. Nemirovskii G. Stamm W. Fisdon (1993) Phys. Rev. B 48 IssueID10 7338 Occurrence Handle10.1103/PhysRevB.48.7338

    Article  Google Scholar 

  22. D. R. Lide (Eds) (1994) CRC Handbook of Chemistry and Physics EditionNumber75 CRC Press Boca Raton

    Google Scholar 

  23. R. J. Donnelly R. A. Riegelmann C. F. Barenghi (1992) A Report of the Department of Physics University of Oregon Eugene

    Google Scholar 

  24. L. E. Kinsler A. R. Frey A. B. Coppens J. V. Sanders (2000) Fundamentals of Acoustics EditionNumber4 John Wiley and Sons New York

    Google Scholar 

  25. Stalp S.R. (1998). Ph.D. Dissertation, Department of Physics, University of Oregon, Eugene

  26. S. K. Nemirovskii (2005) ArticleTitleInternational Symposium on Quantum Fluids and Solids, Trento (5–9 July 2004) J. Low Temp. Phys. 138 IssueID3/4 531

    Google Scholar 

  27. T. Shimazaki, T. Iida, and M. Murakami, Adv. Cryo. Eng. 39B, Kittel, P., et al., (eds.), pp. 1859–1864, Plenum Publishers, New York (1994).

  28. S. W. Van Sciver (1986) Helium Cryogenics Plenum Press New York

    Google Scholar 

  29. T. Shimazaki M. Murakami T. Iida (1995) Cryogenics 35 IssueID10 651 Occurrence Handle10.1016/S0011-2275(99)80005-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Hilton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilton, D.K., Sciver, S.W.V. Direct Measurements of Quantum Turbulence Induced by Second Sound Shock Pulses in Helium II. J Low Temp Phys 141, 47–82 (2005). https://doi.org/10.1007/s10909-005-7514-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-005-7514-z

Keywords

Navigation