Log in

Enhancing UV Protection and Antimicrobial Properties in Food Packaging Through the Use of Copper Nanoparticles and κ-Carrageenan Based Nanocomposite Film

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The traditional plastic packaging harms the environment, necessitating the need for environmentally friendly alternatives. The plant mediated amalgamation process for copper nanoparticles using Argemone maxicana offers an economically feasible and non-toxic approach. κ-Carrageenan, derived from red seaweeds, serves as an ideal matrix for creating nanocomposite materials. The resultant nanocomposite films have improved thermal stability, elastic properties, water vapour resistance, and UV resistance qualities. With inhibitory zones against S. aureus and E. coli, they also exhibit strong activities against bacteria. Additionally, grapes (12 days) and cottage cheese (7 days) were preserved using these films, and the food’s quality was effectively maintained without any additional care. Overall, this method lessens the environmental effect of traditional plastic materials while providing an environmentally acceptable packing for food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

The data was provided upon request.

References

  1. W. Zhang, S. Roy, P. Ezati, D.P. Yang, J.W. Rhim, Tannic acid: a green crosslinker for biopolymer-based food packaging films. Trends Food Sci. Technol. (2023). https://doi.org/10.1016/j.tifs.2023.04.004

    Article  PubMed  Google Scholar 

  2. A. Khan, R. Priyadarshi, T. Bhattacharya, J.W. Rhim, Carrageenan/alginate-based functional films incorporated with Allium sativum carbon dots for UV-barrier food packaging. Food Bioprocess Technol. 16, 1–15 (2023). https://doi.org/10.1007/s11947-023-03048-7

    Article  CAS  Google Scholar 

  3. W. Chi, W. Liu, J. Li, L. Wang, Simultaneously realizing intelligent color change and high haze of κ-carrageenan film by incorporating black corn seed powder for visually monitoring pork freshness. Food Chem. 402, 134257 (2023). https://doi.org/10.1016/j.foodchem.2022.134257

    Article  CAS  PubMed  Google Scholar 

  4. Y. Han, M. Zhou, D.J. McClements, F. Liu, C. Cheng, J. **ong, M. Zhu, S. Chen, Investigation of a novel smart and active packaging materials: nanoparticle-filled carrageenan-based composite films. Carbohydr. Polym. 301, 120331 (2023). https://doi.org/10.1016/j.carbpol.2022.120331

    Article  CAS  PubMed  Google Scholar 

  5. N. Bhatia, A. Kumari, A. Sharma, R. Sharma, Bio-inspired green formulation of various metal nanoparticles: a review. J. Mater. Sci. Res. Rev. 8(4), 1–38 (2021)

    Google Scholar 

  6. N. Chauhan, N. Thakur, A. Kumari, C. Khatana, R. Sharma, Mushroom and silk sericin extract mediated ZnO nanoparticles for removal of organic pollutants and microorganisms. S. Afr. J. Bot. 153, 370–381 (2023). https://doi.org/10.1016/j.sajb.2023.01.001

    Article  CAS  Google Scholar 

  7. V. Dhiman, M. Jangra, S. Kumar, P. Choudhary, S. Chand, A. Kumari, R. Sharma, N. Kondal, Structural and defect-related optical characteristics of Viola odorata extract mediated ZnO. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.11.106

    Article  PubMed  Google Scholar 

  8. N. Bhatia, A. Kumari, N. Thakur, G. Sharma, R.R. Singh, R. Sharma, Phytochemically stabilized chitosan encapsulated Cu and Ag nanocomposites to remove cefuroxime axetil and pathogens from the environment. Int. J. Biol. Macromol. 212, 451–464 (2022). https://doi.org/10.1016/j.ijbiomac.2022.05.143

    Article  CAS  PubMed  Google Scholar 

  9. M. Hadidi, S. Jafarzadeh, M. Forough, F. Garavand, S. Alizadeh, A. Salehabadi, A.M. Khaneghah, S.M. Jafari, Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends Food Sci. Technol. (2022). https://doi.org/10.1016/j.tifs.2022.01.013

    Article  Google Scholar 

  10. R. Sharma, R. Sharma, R.R. Singh, A. Kumari, Evaluation of biogenic zinc oxide nanoparticles from Tinospora cordifolia stem extract for photocatalytic, anti-microbial, and antifungal activities. Mater. Chem. Phys. 297, 127382 (2023). https://doi.org/10.1016/j.matchemphys.2023.127382

    Article  CAS  Google Scholar 

  11. D.G. Téllez-de-Jesús, N.S. Flores-Lopez, J.A. Cervantes-Chávez, A.R. Hernández-Martínez, Antibacterial and antifungal activities of encapsulated Au and Ag nanoparticles synthesized using Argemone mexicana L extract, against antibiotic-resistant bacteria and Candida albicans. Surf. Interfaces 27, 101456 (2021). https://doi.org/10.1016/j.surfin.2021.101456

    Article  CAS  Google Scholar 

  12. W. Zhang, W. Jiang, Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. Int. J. Biol. Macromol. 155, 1252–1261 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.093

    Article  CAS  PubMed  Google Scholar 

  13. S. Shankar, J.P. Reddy, J.W. Rhim, H.Y. Kim, Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydr. Polym. 117, 468–475 (2015). https://doi.org/10.1016/j.carbpol.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  14. S. Shankar, J.W. Rhim, Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr. Polym. 135, 18–26 (2016). https://doi.org/10.1016/j.carbpol.2015.08.082

    Article  CAS  PubMed  Google Scholar 

  15. J.W. Rhim, Physical-mechanical properties of agar/κ-carrageenan blend film and derived clay nanocomposite film. J. Food Sci. 77(12), N66–N73 (2012). https://doi.org/10.1111/j.1750-3841.2012.02988

    Article  PubMed  Google Scholar 

  16. S. Shankar, L.F. Wang, J.W. Rhim, Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydr. Polym. 169, 264–271 (2017). https://doi.org/10.1016/j.carbpol.2017.04.025

    Article  CAS  PubMed  Google Scholar 

  17. J.W. Rhim, L.F. Wang, Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Appl. Clay Sci. 97, 174–181 (2014). https://doi.org/10.1016/j.clay.2014.05.025

    Article  CAS  Google Scholar 

  18. A. Ounkaew, P. Kasemsiri, K. Kamwilaisak, K. Saengprachatanarug, W. Mongkolthanaruk, M. Souvanh, U. Pongsa, P. Chindaprasirt, Polyvinyl alcohol (PVA)/starch bioactive packaging film enriched with antioxidants from spent coffee ground and citric acid. J. Polym. Environ. 26, 3762–3772 (2018). https://doi.org/10.1007/s10924-018-1254-z

    Article  CAS  Google Scholar 

  19. H. Ibrahim, M. Farag, H. Megahed, S. Mehanny, Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydr. Polym. 101, 11–19 (2014). https://doi.org/10.1016/j.carbpol.2013.08.051

    Article  CAS  PubMed  Google Scholar 

  20. A.M. Youssef, F.M. Assem, H.S. El-Sayed, S.M. El-Sayed, M. Elaaser, M.H. Abd El-Salam, Synthesis and evaluation of eco-friendly carboxymethyl cellulose/polyvinyl alcohol/CuO bionanocomposites and their use in coating processed cheese. RSC Adv. 10(62), 37857–37870 (2020). https://doi.org/10.1039/D0RA07898K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R. Sharma, P. Singh, R. Dharela, G.S. Chauhan, K. Chauhan, Thiourea functionalized β-cyclodextrin as green reducing and stabilizing agent for silver nanocomposites with enhanced antimicrobial and antioxidant properties. New J. Chem. 41(21), 12645–12654 (2017). https://doi.org/10.1039/C7NJ00759K

    Article  CAS  Google Scholar 

  22. N. Bhatia, A. Kumari, N. Chauhan, N. Thakur, R. Sharma, Duchsnea indica plant extract mediated synthesis of copper oxide nanomaterials for antimicrobial activity and free-radical scavenging assay. Biocatal. Agric. Biotechnol. 47, 102574 (2023). https://doi.org/10.1016/j.bcab.2022.102574

    Article  CAS  Google Scholar 

  23. A. Henglein, Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of Cu (CN) 2. J. Phys. Chem. B 104(6), 1206–1211 (2000). https://doi.org/10.1021/jp992950g

    Article  CAS  Google Scholar 

  24. A.A. Oun, J.W. Rhim, Carrageenan-based hydrogels and films: effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll. 67, 45–53 (2017). https://doi.org/10.1016/j.foodhyd.2016.12.040

    Article  CAS  Google Scholar 

  25. H. Hezaveh, I.I. Muhamad, Modification and swelling kinetic study of kappa-carrageenan-based hydrogel for controlled release study. J. Taiwan Inst. Chem. Eng. 44(2), 182–191 (2013). https://doi.org/10.1016/j.jtice.2012.10.011

    Article  CAS  Google Scholar 

  26. S.K. Karuppannan, R. Ramalingam, S.M. Khalith, M.J.H. Dowlath, G.D. Raiyaan, K.D. Arunachalam, Characterization, antibacterial and photocatalytic evaluation of green synthesized copper oxide nanoparticles. Biocatal. Agric. Biotechnol. 31, 101904 (2021). https://doi.org/10.1016/j.bcab.2020.101904

    Article  CAS  Google Scholar 

  27. C. Karthikeyan, K. Varaprasad, S.K. Venugopal, S. Shakila, B.R. Venkatraman, R. Sadiku, Biocidal (bacterial and cancer cells) activities of chitosan/CuO nanomaterial, synthesized via a green process. Carbohydr. Polym. 259, 117762 (2021). https://doi.org/10.1016/j.carbpol.2021.117762

    Article  CAS  PubMed  Google Scholar 

  28. F. Li, Y. Liu, Y. Cao, Y. Zhang, T. Zhe, Z. Guo, X. Sun, Q. Wang, L. Wang, Copper sulfide nanoparticle-carrageenan films for packaging application. Food Hydrocoll. 109, 106094 (2020). https://doi.org/10.1016/j.foodhyd.2020.106094

    Article  CAS  Google Scholar 

  29. P. Kanmani, J.W. Rhim, Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr. Polym. 106, 190–199 (2014). https://doi.org/10.1016/j.carbpol.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  30. A.A. Oun, J.W. Rhim, Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydr. Polym. 127, 101–109 (2015). https://doi.org/10.1016/j.carbpol.2015.03.073

    Article  CAS  PubMed  Google Scholar 

  31. P. Ezati, Z. Riahi, J.W. Rhim, Carrageenan-based functional films integrated with CuO-doped titanium nanotubes for active food-packaging applications. ACS Sustain. Chem. Eng. 9(28), 9300–9307 (2021). https://doi.org/10.1021/acssuschemeng.1c01957

    Article  CAS  Google Scholar 

  32. R. Balasubramanian, S.S. Kim, J. Lee, J. Lee, Effect of TiO2 on highly elastic, stretchable UV protective nanocomposite films formed by using a combination of k-Carrageenan, xanthan gum and gellan gum. Int. J. Biol. Macromol. 123, 1020–1027 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.151

    Article  CAS  PubMed  Google Scholar 

  33. L. Ge, M. Zhu, Y. Xu, X. Li, D. Li, C. Mu, Development of antimicrobial and controlled biodegradable gelatin-based edible films containing nisin and amino-functionalized montmorillonite. Food Bioprocess Technol. 10, 1727–1736 (2017). https://doi.org/10.1007/s11947-017-1941-0

    Article  CAS  Google Scholar 

  34. K. Chauhan, R. Sharma, R. Dharela, G.S. Chauhan, R.K. Singhal, Chitosan-thiomer stabilized silver nano-composites for antimicrobial and antioxidant applications. RSC Adv. 6(79), 75453–75464 (2016). https://doi.org/10.1039/C6RA13466A

    Article  CAS  Google Scholar 

  35. S. Shankar, D. Khodaei, M. Lacroix, Effect of chitosan/essential oils/silver nanoparticles composite films packaging and gamma irradiation on shelf life of strawberries. Food Hydrocoll. 117, 106750 (2021). https://doi.org/10.1016/j.foodhyd.2021.106750

    Article  CAS  Google Scholar 

  36. Z. Su, M. Hu, Z. Gao, M. Li, Z. Yun, Y. Pan, Z. Zhang, Y. Jiang, Apple polyphenols delay senescence and maintain edible quality in litchi fruit during storage. Postharvest Biol. Technol. 157, 110976 (2019). https://doi.org/10.1016/j.postharvbio.2019.110976

    Article  CAS  Google Scholar 

  37. S. Mei, B. Fu, X. Su, H. Chen, H. Lin, Z. Zheng, C. Dai, D.P. Yang, Develo** silk sericin-based and carbon dots reinforced bio-nanocomposite films and potential application to litchi fruit. LWT 164, 113630 (2022). https://doi.org/10.1016/j.lwt.2022.113630

    Article  CAS  Google Scholar 

  38. X. Jiang, H. Lin, J. Shi, S. Neethirajan, Y. Lin, Y. Chen, H. Wang, Y. Lin, Effects of a novel chitosan formulation treatment on quality attributes and storage behavior of harvested litchi fruit. Food Chem. 252, 134–141 (2018)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors show their genuine gratitude to the Researchers Supporting Project number (RSP2024R391) at King Saud University, Riyadh, Saudi Arabia. We are truly appreciative to and grateful to Sophisticated Analytical Instrumentation Facility (SAIF) lab QQ69 + H8Q, Punjab University, Sector 14, Chandigarh, India, 160014 for their valuable support for conducting FESEM characterization of the Carr/Cu film. Their skills as well as resources have greatly contributed to the success of this research. We heartily appreciate Materials Research Center (MRC) at Malaviya National Institute of Technology (MNIT), JLN Marg, Jaipur—302017 for analysis of the mechanical traits of the synthesized films. The assistance provided by them has been invaluable in our quest to understand the functional integrity of synthesized films. We are sincerely thankful for their support and cooperation.

Funding

This study was supported by King Saud University (Grant No. RSP2024R391).

Author information

Authors and Affiliations

Authors

Contributions

S.K. performed the experiments and written the original draft, A.K. investigate the results, J.K. performed the review and writing, R.J. supervised the whole work, M.S. performed the review and writing, N.L. performed the experiment, N.K. investigate the results, A.K. provided the technical support, R.S. performed the experiments, supervised and written the original draft.

Corresponding authors

Correspondence to Rohit Jasrotia or Rahul Sharma.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1414 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Kumari, A., Ahmed, J. et al. Enhancing UV Protection and Antimicrobial Properties in Food Packaging Through the Use of Copper Nanoparticles and κ-Carrageenan Based Nanocomposite Film. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03231-z

Keywords

Navigation