Log in

Composite Nanoarchitectonics based on Graphene Oxide in Energy Storage and Conversion: Status, Challenges & Opportunities

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Energy storage and conversion play a crucial role to maintain a balance between supply and demand, integrating renewable energy sources, and ensuring the resilience of a robust power infrastructure. Carbon-based materials exhibit favorable energy storage characteristics, including a significant surface area, adaptable porosity, exceptional conductivity, chemical stability, and the capacity to facilitate various charge storage processes. These qualities make them exceptionally well-suited for deployment in supercapacitors, batteries, and other energy storage devices. Among these materials, graphene oxide (GO) has come out as a versatile substance with outstanding properties, positioning it as a key player in energy storage and conversion technologies. Ongoing advancements in GO-based composites, applied in supercapacitors, batteries, fuel cells, and solar cells, have resulted in ground breaking discoveries and innovative methodologies. This comprehensive review delves into the structure and preparation of GO, exploring its applications in energy storage, outlining prospective prospects, and charting future directions. The aim is to offer valuable insights into existing limitations, such as toxicity while unveiling the full potential of these materials in energy applications through the revelation of synergistic benefits arising from the integration of GO.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. B. Wang, T. Ruan, Y. Chen, F. **, L. Peng, Y. Zhou, D. Wang, S. Dou, Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020). https://doi.org/10.1016/j.ensm.2019.08.004

    Article  Google Scholar 

  2. D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómez-Romero, Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44, 1777–1790 (2015). https://doi.org/10.1039/c4cs00266k

    Article  CAS  PubMed  Google Scholar 

  3. M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a

    Article  CAS  PubMed  Google Scholar 

  4. A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ x-ray-based spectroscopies. J. Phys. Chem. C. 115, 17009–17019 (2011). https://doi.org/10.1021/jp203741y

    Article  CAS  Google Scholar 

  5. S. Saxena, T.A. Tyson, S. Shukla, E. Negusse, H. Chen, J. Bai, Investigation of structural and electronic properties of graphene oxide. Appl. Phys. Lett. 99, 5–8 (2011). https://doi.org/10.1063/1.3607305

    Article  CAS  Google Scholar 

  6. F. Li, X. Jiang, J. Zhao, S. Zhang, Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy 16, 488–515 (2015). https://doi.org/10.1016/j.nanoen.2015.07.014

    Article  CAS  Google Scholar 

  7. Y. Tian, Z. Yu, L. Cao, X.L. Zhang, C. Sun, D.-W. Wang, Graphene oxide: An emerging electromaterial for energy storage and conversion. J. Energy Chem. 55, 323–344 (2021). https://doi.org/10.1016/j.jechem.2020.07.006

    Article  CAS  Google Scholar 

  8. T. Niet, N. Arianpoo, K. Kuling, A.S. Wright, Embedding the United Nations sustainable development goals into energy systems analysis: expanding the food–energy–water nexus. Energy Sustain. Soc. 11, 1 (2021). https://doi.org/10.1186/s13705-020-00275-0

    Article  Google Scholar 

  9. H.D. Yoo, E. Markevich, G. Salitra, D. Sharon, D. Aurbach, On the challenge of develo** advanced technologies for electrochemical energy storage and conversion. Mater. Today 17, 110–121 (2014). https://doi.org/10.1016/j.mattod.2014.02.014

    Article  CAS  Google Scholar 

  10. R. Sharma, H. Kumar, G. Kumar, S. Sharma, R. Aneja, A.K. Sharma, R. Kumar, P. Kumar, Progress and challenges in electrochemical energy storage devices: Fabrication, electrode material, and economic aspects. Chem. Eng. J. 468, 143706 (2023). https://doi.org/10.1016/j.cej.2023.143706

    Article  CAS  Google Scholar 

  11. S. Mallick, D. Gayen, Thermal behaviour and thermal runaway propagation in lithium-ion battery systems – A critical review. J. Energy Storage 62, 106894 (2023). https://doi.org/10.1016/j.est.2023.106894

    Article  Google Scholar 

  12. N. Collath, B. Tepe, S. Englberger, A. Jossen, H. Hesse, Aging aware operation of lithium-ion battery energy storage systems: A review. J. Energy Storage 55, 105634 (2022). https://doi.org/10.1016/j.est.2022.105634

    Article  Google Scholar 

  13. M.E. Amiryar, K.R. Pullen, A review of flywheel energy storage system technologies and their applications. Appl. Sci. 7, (2017). https://doi.org/10.3390/app7030286

  14. A.R. Dehghani-Sanij, E. Tharumalingam, M.B. Dusseault, R. Fraser, Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 104, 192–208 (2019). https://doi.org/10.1016/j.rser.2019.01.023

    Article  Google Scholar 

  15. E.S. Division, A review of battery life-cycle analysis: State of knowledge and critical needs. Battery Manuf. Electr. Hybrid Veh. 91–133 (2011). https://doi.org/10.2172/1000659

  16. M. Sabzevari, D. Cree, L. Wilson, Preparation and characterization of graphene oxide cross-linked composites. (2018). https://doi.org/10.25071/10315/35427

  17. B. Konkena, S. Vasudevan, Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J. Phys. Chem. Lett. 3, 867–872 (2012). https://doi.org/10.1021/jz300236w

    Article  CAS  PubMed  Google Scholar 

  18. D.R. Dreyer, A.D. Todd, C.W. Bielawski, Harnessing the chemistry of graphene oxide. Chem. Soc. Rev. 43, 5288–5301 (2014). https://doi.org/10.1039/c4cs00060a

    Article  CAS  PubMed  Google Scholar 

  19. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  20. H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998). https://doi.org/10.1016/S0009-2614(98)00144-4

    Article  CAS  Google Scholar 

  21. A.M. Dimiev, L.B. Alemany, J.M. Tour, Graphene oxide origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano. 7, 576–588 (2013). https://doi.org/10.1021/nn3047378

    Article  CAS  PubMed  Google Scholar 

  22. W. Scholz, H.P. Boehm, Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids. ZAAC – J. Inorg. General Chem. 369, 327–340 (1969). https://doi.org/10.1002/zaac.19693690322

    Article  CAS  Google Scholar 

  23. F. Savazzi, F. Risplendi, G. Mallia, N.M. Harrison, G. Cicero, Unravelling some of the structure-property relationships in graphene oxide at low degree of oxidation. J. Phys. Chem. Lett. 9, 1746–1749 (2018). https://doi.org/10.1021/acs.jpclett.8b00421

    Article  CAS  PubMed  Google Scholar 

  24. J.P. Rourke, P.A. Pandey, J.J. Moore, M. Bates, I.A. Kinloch, R.J. Young, N.R. Wilson, The real graphene oxide revealed: Strip** the oxidative debris from the graphene-like sheets. Angewandte Chemie – Int. Ed. 50, 3173–3177 (2011). https://doi.org/10.1002/anie.201007520

    Article  CAS  Google Scholar 

  25. T. Nakajima, Y. Matsuo, Formation process and structure of graphite oxide. Carbon 32, 469–475 (1994). https://doi.org/10.1016/0008-6223(94)90168-6

    Article  CAS  Google Scholar 

  26. L. Sun, Structure and synthesis of graphene oxide. Chin. J. Chem. Eng. 27, 2251–2260 (2019). https://doi.org/10.1016/j.cjche.2019.05.003

    Article  CAS  Google Scholar 

  27. Benjamin Collins Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 149, 249–259 (1859). https://doi.org/10.1098/rstl.1859.0013

    Article  Google Scholar 

  28. L. Staudenmaier, Berichte der deutschen chemischen Gesellschaft. 31, 1481 - 1487 (1898). https://doi.org/10.1002/cber.18980310237

  29. C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, L.-J. Li, Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 21, 5674–5680 (2009). https://doi.org/10.1021/cm902182y

    Article  CAS  Google Scholar 

  30. S. Pei, Q. Wei, K. Huang, H.M. Cheng, W. Ren, Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Commun. 9, (2018). https://doi.org/10.1038/S41467-017-02479-Z

  31. Y. Zhu, M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner, D. Chen, R.S. Ruoff, Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4, 1227–1233 (2010). https://doi.org/10.1021/nn901689k

    Article  CAS  PubMed  Google Scholar 

  32. O. Akhavan, The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48, 509–519 (2010). https://doi.org/10.1016/j.carbon.2009.09.069

    Article  CAS  Google Scholar 

  33. M.Z. Hossain, M.B.A. Razak, S. Yoshimoto, K. Mukai, T. Koitaya, J. Yoshinobu, H. Sone, S. Hosaka, M.C. Hersam, Aqueous-phase oxidation of epitaxial graphene on the silicon face of SiC(0001). J. Phys. Chem. C. 118, 1014–1020 (2014). https://doi.org/10.1021/jp4092738

    Article  CAS  Google Scholar 

  34. A.M. Dimiev, G. Ceriotti, A. Metzger, N.D. Kim, J.M. Tour, Chemical mass production of graphene nanoplatelets in ∼100% yield. ACS Nano 10, 274–279 (2016). https://doi.org/10.1021/ACSNANO.5B06840/SUPPL_FILE/NN5B06840_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  35. V. Panwar, A. Chattree, K. Pal, A new facile route for synthesizing of graphene oxide using mixture of sulfuric–nitric–phosphoric acids as intercalating agent. Physica E 73, 235–241 (2015). https://doi.org/10.1016/J.PHYSE.2015.06.006

    Article  CAS  Google Scholar 

  36. S. Yadav, A.P. Singh Raman, H. Meena, A.G. Goswami, Bhawna, V. Kumar, P. Jain, G. Kumar, M. Sagar, D.K. Rana, I. Bahadur, P. Singh, An update on graphene oxide: Applications and toxicity. ACS Omega 7, 35387–35445 (2022). https://doi.org/10.1021/acsomega.2c03171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. Muniyalakshmi, K. Sethuraman, D. Silambarasan, Synthesis and characterization of graphene oxide nanosheets. Elsevier Ltd (2020). https://doi.org/10.1016/j.matpr.2019.06.375

    Article  Google Scholar 

  38. J. Song, X. Wang, C.-T. Chang, Preparation and characterization of graphene oxide. J. Nanomater. 2014, 276143 (2014). https://doi.org/10.1155/2014/276143

    Article  CAS  Google Scholar 

  39. T. Rattana, S. Chaiyakun, N. Witit-Anun, N. Nuntawong, P. Chindaudom, S. Oaew, C. Kedkeaw, P. Limsuwan, Preparation and characterization of graphene oxide nanosheets. Procedia Engineering. 32, 759–764 (2012). https://doi.org/10.1016/j.proeng.2012.02.009

    Article  CAS  Google Scholar 

  40. A.O.E. Abdelhalim, V.V. Sharoyko, A.A. Meshcheriakov, S.D. Martynova, S.V. Ageev, G.O. Iurev, H. Al Mulla, A.V. Petrov, I.L. Solovtsova, L.V. Vasina, I.V. Murin, K.N. Semenov, Reduction and functionalization of graphene oxide with L-cysteine: Synthesis, characterization and biocompatibility. Nanomedicine: Nanotechnology, Biology, and Medicine. 29, 102284 (2020). https://doi.org/10.1016/j.nano.2020.102284

    Article  CAS  PubMed  Google Scholar 

  41. D.J. Joshi, J.R. Koduru, N.I. Malek, C.M. Hussain, S.K. Kailasa, Surface modifications and analytical applications of graphene oxide: A review. TrAC - Trends Anal. Chem. 144, 116448 (2021). https://doi.org/10.1016/j.trac.2021.116448

    Article  CAS  Google Scholar 

  42. L. Xu, H. Zhai, X. Chen, Y. Liu, M. Wang, Z. Liu, M. Umar, C. Ji, Z. Chen, L. **, Z. Liu, Q. Song, P. Yue, Y. Li, T.T. Ye, Coolmax/graphene-oxide functionalized textile humidity sensor with ultrafast response for human activities monitoring. Chem. Eng. J. 412, 128639 (2021). https://doi.org/10.1016/j.cej.2021.128639

    Article  CAS  Google Scholar 

  43. X. Zhao, X. Chen, X. Yu, X. Ding, X. Yu, X. Chen, Fast response humidity sensor based on graphene oxide films supported by TiO2 nanorods. Diamond Relat. Mater. 109, 108031 (2020). https://doi.org/10.1016/j.diamond.2020.108031

    Article  CAS  Google Scholar 

  44. H. Fang, J. Lin, Z. Hu, H. Liu, Z. Tang, T. Shi, G. Liao, Cu(OH)2 nanowires/graphene oxide composites based QCM humidity sensor with fast-response for real-time respiration monitoring. Sensors Actuators B: Chem. 304, 127313 (2020). https://doi.org/10.1016/j.snb.2019.127313

    Article  CAS  Google Scholar 

  45. D. Zhang, J. Liu, C. Jiang, A. Liu, B. **a, Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sensors Actuators B: Chem. 240, 55–65 (2017). https://doi.org/10.1016/j.snb.2016.08.085

    Article  CAS  Google Scholar 

  46. R. Ranjandish Laleh, H. Savaloni, F. Abdi, Y. Abdi, Corrosion inhibition enhancement of Al alloy by graphene oxide coating in NaCl solution. Prog. Org. Coatings. 127, 300–307 (2019). https://doi.org/10.1016/j.porgcoat.2018.11.031

    Article  CAS  Google Scholar 

  47. N.H. Abu Bakar, G.A.M. Ali, J. Ismail, H. Algarni, K.F. Chong, Size-dependent corrosion behavior of graphene oxide coating. Prog. Org Coatings 134, 272–280 (2019). https://doi.org/10.1016/j.porgcoat.2019.05.011

    Article  CAS  Google Scholar 

  48. Y. Wang, B. Yang, Z. Huang, Z. Yang, J. Wang, Q. Ao, Progress and mechanism of graphene oxide-composited materials in application of peripheral nerve repair. (2023). https://doi.org/10.1016/j.colsurfb.2023.113672

  49. A.D. Sontakke, S. Tiwari, M.K. Purkait, FlatChem A comprehensive review on graphene oxide-based nanocarriers : Synthesis, functionalization and biomedical applications. FlatChem. 38, 100484 (2023). https://doi.org/10.1016/j.flatc.2023.100484

    Article  CAS  Google Scholar 

  50. R. Muhammad, N. Javed, A. Al-othman, M. Tawalbeh, A. Ghani, Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications. Renew. Sustain. Energy Rev. 168, 112836 (2022). https://doi.org/10.1016/j.rser.2022.112836

    Article  CAS  Google Scholar 

  51. O.J. Ajala, J.O. Tijani, M.T. Bankole, A.S. Abdulkareem, Environmental nanotechnology monitoring & management a critical review on graphene oxide nanostructured material : Properties, synthesis, characterization and application in water and wastewater treatment. Environ. Nanotechnol. Monit. Manag. 18, 100673 (2022). https://doi.org/10.1016/j.enmm.2022.100673

    Article  CAS  Google Scholar 

  52. H. Zeng, S. Qu, Y. Tian, Y. Hu, Y. Li, Recent progress on graphene oxide for next-generation concrete : Characterizations, applications and challenges. J. Build. Eng. 69, 106192 (2023). https://doi.org/10.1016/j.jobe.2023.106192

    Article  Google Scholar 

  53. J. Singh, N. **dal, V. Kumar, K. Singh, Role of green chemistry in synthesis and modification of graphene oxide and its application : A review study. Chem. Phys. Impact. 6, 100185 (2023). https://doi.org/10.1016/j.chphi.2023.100185

    Article  Google Scholar 

  54. J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  55. J. Meng, H. Guo, C. Niu, Y. Zhao, L. Xu, Q. Li, L. Mai, Advances in structure and property optimizations of battery electrode materials. Joule. 1, 522–547 (2017). https://doi.org/10.1016/j.joule.2017.08.001

    Article  CAS  Google Scholar 

  56. J. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Graphene and graphene-based materials for energy storage applications. Small 10, 3480–3498 (2014). https://doi.org/10.1002/smll.201303202

    Article  CAS  PubMed  Google Scholar 

  57. A. Rajput, P.P. Sharma, V. Yadav, H. Gupta, V. Kulshrestha, Synthesis and characterization of different metal oxide and GO composites for removal of toxic metal ions. Sep. Sci. Technol. (Philadelphia) 54, 426–433 (2019). https://doi.org/10.1080/01496395.2018.1500596

    Article  CAS  Google Scholar 

  58. O. Faye, I.A. Udoetok, J.A. Szpunar, L.D. Wilson, Experimental and theoretical studies of hydrogen generation by binary metal (oxide)-graphene oxide composite materials. Int. J. Hydrogen Energy 46, 19802–19813 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.127

    Article  CAS  Google Scholar 

  59. R. Simon, S. Chakraborty, K.S. Darshini, N.L. Mary, Electrolyte dependent performance of graphene–mixed metal oxide composites for enhanced supercapacitor applications. SN Appl. Sci. 2, 1898 (2020). https://doi.org/10.1007/s42452-020-03708-9

    Article  CAS  Google Scholar 

  60. J. Ahmad, K. Majid, Improved thermal stability metal oxide/GO-based hybrid materials for enhanced Anti-inflammatory and Antioxidant activity. Polym. Bull. 78, 3889–3911 (2021). https://doi.org/10.1007/s00289-020-03304-2

    Article  CAS  Google Scholar 

  61. R. Bhujel, S. Rai, U. Deka, B.P. Swain, Electrochemical, bonding network and electrical properties of reduced graphene oxide-Fe2O3 nanocomposite for supercapacitor electrodes applications. J. Alloys Compd. 792, 250–259 (2019). https://doi.org/10.1016/j.jallcom.2019.04.004

    Article  CAS  Google Scholar 

  62. Z. Abasali karaj abad, A. Nemati, A. Malek Khachatourian, M. Golmohammad, Synthesis and characterization of rGO/Fe2O3 nanocomposite as an efficient supercapacitor electrode material. J. Mater. Sci.: Materials in Electronics 31, 14998–15005 (2020). https://doi.org/10.1007/s10854-020-04062-7

    Article  CAS  Google Scholar 

  63. W. Gao, Y. Li, J. Zhao, Z. Zhang, W. Tang, J. Wang, Z. Wu, Z. Li, Design and preparation of graphene/Fe2O3 nanocomposite as negative material for supercapacitor. Chem. Res. Chin. Univ. 38, 1097–1104 (2022). https://doi.org/10.1007/s40242-022-1442-1

    Article  CAS  Google Scholar 

  64. G.S. Gund, D.P. Dubal, B.H. Patil, S.S. Shinde, C.D. Lokhande, Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochimica Acta. 92, 205–215 (2013). https://doi.org/10.1016/j.electacta.2012.12.120

    Article  CAS  Google Scholar 

  65. M. Karbak, O. Boujibar, S. Lahmar, G. Ah-lung, C. Autret-Lambert, T. Chafik, F. Ghamouss, Nanometric MnO2 and MnO2-Graphene oxide materials enabled by a solvent-assisted synthesis and their application in asymmetric supercapacitors. Energy Technol. 11, 2201243 (2023). https://doi.org/10.1002/ente.202201243

    Article  CAS  Google Scholar 

  66. M. Jaymand, Recent progress in chemical modification of polyaniline. Prog. Polym. Sci. 38, 1287–1306 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.015

    Article  CAS  Google Scholar 

  67. H. **, G. Bo, W. Guibao, W. Jiatong, Z. Chun, A new nanocomposite: Carbon cloth based polyaniline for an electrochemical supercapacitor. Electrochimica Acta. 111, 210–215 (2013). https://doi.org/10.1016/j.electacta.2013.07.226

    Article  CAS  Google Scholar 

  68. J.E. Yang, I. Jang, M. Kim, S.H. Baeck, S. Hwang, S.E. Shim, Electrochemically polymerized vine-like nanostructured polyaniline on activated carbon nanofibers for supercapacitor. Electrochimica Acta. 111, 136–143 (2013). https://doi.org/10.1016/j.electacta.2013.07.183

    Article  CAS  Google Scholar 

  69. K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/Polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22, 1392–1401 (2010). https://doi.org/10.1021/cm902876u

    Article  CAS  Google Scholar 

  70. H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun. 11, 1158–1161 (2009). https://doi.org/10.1016/j.elecom.2009.03.036

    Article  CAS  Google Scholar 

  71. X.M. Feng, R.M. Li, Y.W. Ma, R.F. Chen, N.E. Shi, Q.L. Fan, W. Huang, One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv. Func. Mater. 21, 2989–2996 (2011). https://doi.org/10.1002/adfm.201100038

    Article  CAS  Google Scholar 

  72. J. Mu, C. Hou, H. Wang, Y. Li, Q. Zhang, M. Zhu, Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Sci. Adv. 1, 1–9 (2015). https://doi.org/10.1126/sciadv.1500533

    Article  Google Scholar 

  73. C. Zhu, J. Zhai, D. Wen, S. Dong, Graphene oxide/polypyrrole nanocomposites: one-step electrochemical do**, coating and synergistic effect for energy storage. J. Mater. Chem. 22, 6300–6306 (2012). https://doi.org/10.1039/C2JM16699B

    Article  CAS  Google Scholar 

  74. S. Konwer, R. Boruah, S.K. Dolui, Studies on conducting polypyrrole/graphene oxide composites as supercapacitor electrode. J. Electron. Mater. 40, 2248–2255 (2011). https://doi.org/10.1007/s11664-011-1749-z

    Article  CAS  Google Scholar 

  75. Y. Liu, R. Deng, Z. Wang, H. Liu, Carboxyl-functionalized graphene oxide-polyaniline composite as a promising supercapacitor material. J. Mater. Chem. 22, 13619–13624 (2012). https://doi.org/10.1039/c2jm32479b

    Article  CAS  Google Scholar 

  76. E. Mitchell, J. Candler, F. De Souza, R.K. Gupta, B.K. Gupta, L.F. Dong, High performance supercapacitor based on multilayer of polyaniline and graphene oxide. Synth. Met. 199, 214–218 (2015). https://doi.org/10.1016/j.synthmet.2014.11.028

    Article  CAS  Google Scholar 

  77. D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987–994 (2006). https://doi.org/10.1038/nmat1782

    Article  CAS  PubMed  Google Scholar 

  78. M. Ben Hadj Said, K. Charradi, Z. Ahmed, H. Cachet, C. Debiemme-Chouvy, Q.A. Alsulami, S. Boufi, S.M.A.S. Keshk, R. Chtourou, Synthesis and characterization of cellulose hydrogel/graphene oxide/polyaniline composite for high-performing supercapacitors. Int. J. Energy Res. 46, 13844–13854 (2022). https://doi.org/10.1002/er.8102

    Article  CAS  Google Scholar 

  79. Y. Tian, Y. Song, Z. Tang, Q. Guo, L. Liu, Influence of high temperature treatment of porous carbon on the electrochemical performance in supercapacitor. J. Power Sources 184, 675–681 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.070

    Article  CAS  Google Scholar 

  80. D. Yuan, J. Chen, J. Zeng, S. Tan, Preparation of monodisperse carbon nanospheres for electrochemical capacitors. Electrochem. Commun. 10, 1067–1070 (2008). https://doi.org/10.1016/j.elecom.2008.05.015

    Article  CAS  Google Scholar 

  81. S. Guo, W. Wang., C.S Ozkan, et al. Assembled graphene oxide and single-walled carbon nanotube ink for stable supercapacitors. Journal of Materials Research 28, 918–926 (2013). https://doi.org/10.1557/jmr.2012.421

    Article  CAS  Google Scholar 

  82. L.-Y. Lin, M.-H. Yeh, J.-T. Tsai, Y.-H. Huang, C.-L. Sun, K.-C. Ho, A novel core–shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. J. Mater. Chem. A. 1, 11237–11245 (2013). https://doi.org/10.1039/C3TA12037F

    Article  CAS  Google Scholar 

  83. R. **g, H. Zhang, C. Huang, F. Su, B. Wu, Z. Sun, F. Xu, L. Sun, Y. **a, H. Peng, X. Lin, B. Li, Y. Zou, H. Chu, P. Huang, E. Yan, Construction of double cross-linking PEG/h-BN@GO polymeric energy-storage composites with high structural stability and excellent thermal performances. Colloids Surf. A: Physicochemical and Engineering Aspects 638, 128193 (2022). https://doi.org/10.1016/j.colsurfa.2021.128193

    Article  CAS  Google Scholar 

  84. C. Feng, Q. Zhang, N. Wang, H. Zhang, F. Xu, L. Sun, Y. **a, H. Peng, X. Lin, B. Li, Y. Zou, H. Chu, E. Yan, P. Huang, Fatty acid eutectics embedded in guar gum/graphene oxide/boron nitride carbon aerogels for highly efficient thermal energy storage and improved photothermal conversion efficiency. Colloids Surf. A 660, 130810 (2023). https://doi.org/10.1016/j.colsurfa.2022.130810

    Article  CAS  Google Scholar 

  85. M. Boota, C. Chen, M. Bécuwe, L. Miao, Y. Gogotsi, Pseudocapacitance and excellent cyclability of 2,5-dimethoxy-1,4-benzoquinone on graphene. Energy Environ. Sci. 9, 2586–2594 (2016). https://doi.org/10.1039/c6ee00793g

    Article  CAS  Google Scholar 

  86. J. Ismail, M. Sajjad, M.Z. Ullah Shah, R. Hussain, B.A. Khan, R. Maryam, A. Shah, A. Mahmood, S.U. Rahman, Comparative capacitive performance of MnSe encapsulated GO based nanocomposites for advanced electrochemical capacitor with rapid charge transport channels. Mater. Chem. Phys. 284, 126059 (2022). https://doi.org/10.1016/j.matchemphys.2022.126059

    Article  CAS  Google Scholar 

  87. R.M. Obodo, E.O. Onah, H.E. Nsude, A. Agbogu, A.C. Nwanya, I. Ahmad, T. Zhao, P.M. Ejikeme, M. Maaza, F.I. Ezema, Performance evaluation of graphene oxide based Co3O4@GO, MnO2@GO and Co3O4/MnO2@GO electrodes for supercapacitors. Electroanalysis 32, 2786–2794 (2020). https://doi.org/10.1002/elan.202060262

    Article  CAS  Google Scholar 

  88. M.S. Rahmanifar, H. Hesari, A. Noori, M.Y. Masoomi, A. Morsali, M.F. Mousavi, A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochimica Acta. 275, 76–86 (2018). https://doi.org/10.1016/j.electacta.2018.04.130

    Article  CAS  Google Scholar 

  89. Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang, G. Chen, Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A. 5, 1094–1102 (2017). https://doi.org/10.1039/C6TA09805C

    Article  CAS  Google Scholar 

  90. M. Masoomi, A. Morsali, P. Junk, Ultrasound assisted synthesis of a Zn(II) metal-organic framework with nano-plate morphology using non-linear dicarboxylate and linear N-donor ligands. RSC Adv. 4, (2014). https://doi.org/10.1039/C4RA09186H

  91. R. Ramachandran, W. Xuan, C. Zhao, X. Leng, D. Sun, D. Luo, F. Wang, Enhanced electrochemical properties of cerium metal–organic framework based composite electrodes for high-performance supercapacitor application. RSC Adv. 8, 3462–3469 (2018). https://doi.org/10.1039/C7RA12789H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Y. Liu, Y. Zhang, G. Ma, Z. Wang, K. Liu, H. Liu, Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochimica Acta. 88, 519–525 (2013). https://doi.org/10.1016/j.electacta.2012.10.082

    Article  CAS  Google Scholar 

  93. G. Mummoorthi, S. Arjunan, M. Selvaraj, S.L. Rokhum, N. Mani, S. Periyasamy, R. Rajendran, High-performance solid-state asymmetric Supercapacitor based on α-Fe2O3/r-GO/GCN composite electrode material for energy storage application. Surf. Interf. 41, 103166 (2023). https://doi.org/10.1016/j.surfin.2023.103166

    Article  CAS  Google Scholar 

  94. C.T. Altaf, T.O. Colak, A.M. Rostas, M. Mihet, M.D. Lazar, I. Iatsunskyi, E. Coy, I.D. Yildirim, F.B. Misirlioglu, E. Erdem, M. Sankir, N.D. Sankir, GO/ZnO-based all-solid-state photo-supercapacitors: Effect of GO:ZnO ratio on composite properties and device performance. J. Energy Storage 68, 107694 (2023). https://doi.org/10.1016/j.est.2023.107694

    Article  Google Scholar 

  95. M.S. Muthu, P. Ajith, J. Agnes, M.S. Selvakumar, M. Presheth, D.P. Anand, Hydrothermal synthesis and characterisation of nano graphene oxide/cobalt oxide (GO/Co3O4) nanocomposite suitable for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 34, 1766 (2023). https://doi.org/10.1007/s10854-023-11085-3

    Article  CAS  Google Scholar 

  96. F.J. Mascarenhas, J.D. Rodney, P. Mishra, B.R. Bhat, Revolutionizing energy storage: A novel Cu2Se-GO nanocomposite for supercapacitors. Inorg. Chem. Commun. 156, 111253 (2023). https://doi.org/10.1016/j.inoche.2023.111253

    Article  CAS  Google Scholar 

  97. V.J. Mane, A.C. Lokhande, R.P. Nikam, N.S. Padalkar, V.C. Lokhande, D.S. Dhawale, C.D. Lokhande, MnS-La2S3/GO composite electrodes for high-performance flexible symmetric supercapacitor. Appl. Surf. Sci. Adv. 15, 100399 (2023). https://doi.org/10.1016/j.apsadv.2023.100399

    Article  Google Scholar 

  98. N.S. Shaikh, V.C. Lokhande, T. Ji, S. Ubale, V.J. Mane, C.D. Lokhande, H.M. Shaikh, J.S. Shaikh, S. Praserthdam, S. Sabale, P. Kanjanaboos, Rational La-doped hematite as an anode and hydrous cobalt phosphate as a battery-type electrode for a hybrid supercapacitor. Dalton Trans. 6378–6389 (2022). https://doi.org/10.1039/d1dt04164a

  99. M.R. Biradar, C.R.K. Rao, S.V. Bhosale, S.V. Bhosale, 2023 Bio-inspired adenine-benzoquinone-adenine pillar grafted graphene oxide materials with excellent cycle stability for high energy and power density supercapacitor applications. J. Energy Storage 58, 106399 (2023). https://doi.org/10.1016/j.est.2022.106399

    Article  Google Scholar 

  100. A. Kachmar, M. Tobis, E. Frąckowiak, Electrochemical Capacitor Based on Reduced Graphene Oxide/NiS2 Composite. ChemElectroChem. 9, (2022). https://doi.org/10.1002/celc.202200834

  101. T. Chen, A. Yang, W. Zhang, J. Nie, T. Wang, J. Gong, Y. Wang, Y. Ji, Architecting nanostructured Co-BTC@GO composites for supercapacitor electrode application. Nanomaterials. 12, (2022). https://doi.org/10.3390/nano12183234

  102. M.M. Rahman, M.R. Shawon, M.H. Rahman, I. Alam, M.O. Faruk, M.M.R. Khan, O. Okoli, Synthesis of polyaniline-graphene oxide based ternary nanocomposite for supercapacitor application. J. Energy Storage 67, 107615 (2023). https://doi.org/10.1016/j.est.2023.107615

    Article  Google Scholar 

  103. A. Rose, K. Guru Prasad, T. Sakthivel, V. Gunasekaran, T. Maiyalagan, T. Vijayakumar, Electrochemical analysis of Graphene Oxide/Polyaniline/Polyvinyl alcohol composite nanofibers for supercapacitor applications. Appl. Surf. Sci. 449, 551–557 (2018). https://doi.org/10.1016/j.apsusc.2018.02.224

    Article  CAS  Google Scholar 

  104. M.A. Hanif, Y.-S. Kim, L.K. Kwac, S. Ameen, A.M. Abdullah, M.S. Akhtar, Titanium oxide aerogel/graphene oxide based electrode for electrochemical supercapacitors. Energy Storage 6, e617 (2024). https://doi.org/10.1002/est2.617

    Article  CAS  Google Scholar 

  105. H. Büyükkürkçü, A. Durmuş, H. Çolak, R. Kurban, E. Şahmetlioğlu, E. Karaköse, Investigation of the performance and properties of ZnO/GO double-layer supercapacitor. J. Phys. Chem. Solids 191, 111984 (2024). https://doi.org/10.1016/j.jpcs.2024.111984

    Article  CAS  Google Scholar 

  106. R. Dadashi, M. Bahram, K. Farhadi, In-situ growth of Cu nanoparticles-polybenzidine over GO sheets onto graphite sheet as a novel electrode material for fabrication of supercapacitor device. J. Energy Storage 79, 110038 (2024). https://doi.org/10.1016/j.est.2023.110038

    Article  Google Scholar 

  107. D. Ravisankar, D. Geetha, P.S. Ramesh, V. Vinothkumar, Novel surface-enriched spiky ball with spines NiCo2S4@GO/CNT electrode material for a high-performance flexible asymmetric supercapacitor. ECS J. Solid State Sci. Technol. 13, 11001 (2024). https://doi.org/10.1149/2162-8777/ad161e

    Article  Google Scholar 

  108. A. Yoshino, The lithium-ion battery: Two breakthroughs in development and two reasons for the nobel prize. Bull. Chem. Soc. Jpn. 95, 195–197 (2022). https://doi.org/10.1246/bcsj.20210338

    Article  CAS  Google Scholar 

  109. J.B. Goodenough, K.-S. Park, The li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  110. S.-H. Cho, J.-W. Jung, C. Kim, I.-D. Kim, Rational design of 1-D Co3O4 Nanofibers@Low content Graphene composite anode for high performance li-ion batteries. Sci. Rep. 7, 45105 (2017). https://doi.org/10.1038/srep45105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008). https://doi.org/10.1038/nnano.2007.451

    Article  CAS  PubMed  Google Scholar 

  112. W. Wei, S. Yang, H. Zhou, I. Lieberwirth, X. Feng, K. Müllen, 3D graphene foams cross-linked with pre-encapsulated Fe3O 4 nanospheres for enhanced lithium storage. Adv. Mater. 25, 2909–2914 (2013). https://doi.org/10.1002/adma.201300445

    Article  CAS  PubMed  Google Scholar 

  113. H. Sun, Lin Mei, J. Liang, Z. Zhao, C. Lee, H. Fei, M. Ding, J. Lau, M. Li, C. Wang, X. Xu, G. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X. Duan, Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage Science 356,599–604 (2017) https://www.jstor.org/stable/26398997

  114. A. Wang, X. Zhang, Y.-W. Yang, J. Huang, X. Liu, J. Luo, Horizontal centripetal plating in the patterned voids of Li/Graphene composites for stable lithium-metal anodes. Chem 4, 2192–2200 (2018). https://doi.org/10.1016/j.chempr.2018.06.017

    Article  CAS  Google Scholar 

  115. K. Khassi, M. Youssefi, D. Semnani, PVDF/TiO2/graphene oxide composite nanofiber membranes serving as separators in lithium-ion batteries. J. Appl. Polym. Sci. 137, 48775 (2020). https://doi.org/10.1002/app.48775

    Article  CAS  Google Scholar 

  116. D. Ma, H. Wang, Y. Li, D. Xu, Y. Shuang, X. Huang, X. Zhang, Y. Zhang, In situ generated FeF3 in homogeneous iron matrix toward High-performance cathode material for sodium-ion batteries. Nano Energy 10, (2014). https://doi.org/10.1016/j.nanoen.2014.10.004

  117. X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 27, 6670–6676 (2015). https://doi.org/10.1002/adma.201502864

    Article  CAS  PubMed  Google Scholar 

  118. Y.-Q. Li, Y. Zhou, W.-L. Ma, P. Wu, X. Cao, X.-S. Zhu, S.-H. Wei, Y.-M. Zhou, Facile fabrication of the hybrid of amorphous FePO4·2H2O and GO toward high performance sodium-ion batteries. J. Phys. Chem. Solids. 176, 111243 (2023). https://doi.org/10.1016/j.jpcs.2023.111243

    Article  CAS  Google Scholar 

  119. Q. Li, F. Yu, Y. Cui, J. Wang, Y. Zhao, J. Peng, Multilayer SnS-SnS2@GO heterostructures nanosheet as anode material for Sodium ion battery with high capacity and stability. J. Alloys Compd. 937, 168392 (2023). https://doi.org/10.1016/j.jallcom.2022.168392

    Article  CAS  Google Scholar 

  120. Z. Pu, P. Zheng, Y. Zhang, Poly (3,4-Ethylenedioxythiophene) (PEDOT) Nanofibers decorated graphene oxide (GO) as High-capacity, long cycle anodes for sodium ion batteries. Mater. 11, (2018). https://doi.org/10.3390/ma11102032

  121. Y. Yang, D. Ye, J. Li, X. Zhu, Q. Liao, B. Zhang, Microfluidic microbial fuel cells: from membrane to membrane free. J. Power Sources 324, 113–125 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.078

    Article  CAS  Google Scholar 

  122. A. ElMekawy, H.M. Hegab, D. Losic, C.P. Saint, D. Pant, Applications of graphene in microbial fuel cells: The gap between promise and reality. Renew. Sustain. Energy Rev. 72, 1389–1403 (2017). https://doi.org/10.1016/j.rser.2016.10.044

    Article  CAS  Google Scholar 

  123. C. Xu, X. Liu, J. Cheng, K. Scott, A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J. Power Sources 274, 922–927 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.134

    Article  CAS  Google Scholar 

  124. Y.-C. Cao, C. Xu, X. Wu, X. Wang, L. **ng, K. Scott, A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J. Power Sources 196, 8377–8382 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.074

    Article  CAS  Google Scholar 

  125. H. Zarrin, D. Higgins, Y. Jun, Z. Chen, M. Fowler, Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J. Phys. Chem. C 115, 20774–20781 (2011). https://doi.org/10.1021/jp204610j

    Article  CAS  Google Scholar 

  126. Y. Liu, J. Wang, H. Zhang, C. Ma, J. Liu, S. Cao, X. Zhang, Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions. J. Power Sources 269, 898–911 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.075

    Article  CAS  Google Scholar 

  127. D.C. Lee, H.N. Yang, S.H. Park, W.J. Kim, Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell. J. Membr. Sci. 452, 20–28 (2014). https://doi.org/10.1016/j.memsci.2013.10.018

    Article  CAS  Google Scholar 

  128. H.N. Yang, W.H. Lee, B.S. Choi, W.J. Kim, Preparation of Nafion/Pt-containing TiO2/graphene oxide composite membranes for self-humidifying proton exchange membrane fuel cell. J. Membr. Sci. 504, 20–28 (2016). https://doi.org/10.1016/j.memsci.2015.12.021

    Article  CAS  Google Scholar 

  129. K. Ravikumar, Scott, Freestanding sulfonated graphene oxide paper: a new polymer electrolyte for polymer electrolyte fuel cells. Chem. Commun. 48, 5584–5586 (2012). https://doi.org/10.1039/C2CC31771K

    Article  CAS  Google Scholar 

  130. A.K. Mishra, N.H. Kim, D. Jung, J.H. Lee, Enhanced mechanical properties and proton conductivity of Nafion–SPEEK–GO composite membranes for fuel cell applications. J. Membr. Sci. 458, 128–135 (2014). https://doi.org/10.1016/j.memsci.2014.01.073

    Article  CAS  Google Scholar 

  131. Y. Kim, K. Ketpang, S. Jaritphun, J.S. Park, S. Shanmugam, A polyoxometalate coupled graphene oxide–Nafion composite membrane for fuel cells operating at low relative humidity. J. Mater. Chem. A. 3, 8148–8155 (2015). https://doi.org/10.1039/C5TA00182J

    Article  CAS  Google Scholar 

  132. R. Kumar, M. Mamlouk, K. Scott, Sulfonated polyether ether ketone – sulfonated graphene oxide composite membranes for polymer electrolyte fuel cells. RSC Adv. 4, 617–623 (2014). https://doi.org/10.1039/C3RA42390E

    Article  CAS  Google Scholar 

  133. K. Maegawa, Y. Ashida, K. Hikima, W.K. Tan, G. Kawamura, A. Matsuda, Enhanced proton conductivity and power density of HT-PEMFCs using tin pyrophosphate microparticles-dispersed polybenzimidazole composite electrolyte membranes. Solid State Ionics 393, 116186 (2023). https://doi.org/10.1016/j.ssi.2023.116186

    Article  CAS  Google Scholar 

  134. K. Maegawa, H. Nagai, R. Kumar, M.M. Abdel-Galeil, W.K. Tan, A. Matsuda, Development of polybenzimidazole modification with open-edges/porous-reduced graphene oxide composite membranes for excellent stability and improved PEM fuel cell performance. Mater. Chem. Phys. 294, 126994 (2023). https://doi.org/10.1016/j.matchemphys.2022.126994

    Article  CAS  Google Scholar 

  135. M. Vinothkannan, R. Kim, G. Gnana, Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity. 7494–7508 (2018). https://doi.org/10.1039/c7ra12768e

  136. Z. Lv, Y. Chen, H. Wei, F. Li, Y. Hu, C. Wei, C. Feng, One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochimica Acta. 111, 366–373 (2013). https://doi.org/10.1016/j.electacta.2013.08.022

    Article  CAS  Google Scholar 

  137. J.X. Leong, W.R.W. Daud, M. Ghasemi, A. Ahmad, M. Ismail, K. Ben Liew, Composite membrane containing graphene oxide in sulfonated polyether ether ketone in microbial fuel cell applications. Int. J. Hydrogen Energy 40, 11604–11614 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.082

    Article  CAS  Google Scholar 

  138. D. Paul, M.T. Noori, P.P. Rajesh, M.M. Ghangrekar, A. Mitra, Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell. Sustain. Energy Technol. Assess. 26, 77–82 (2018). https://doi.org/10.1016/j.seta.2017.10.001

    Article  Google Scholar 

  139. M. Shabani, H. Younesi, M. Pontié, A. Rahimpour, M. Rahimnejad, H. Guo, A. Szymczyk, Enhancement of microbial fuel cell efficiency by incorporation of graphene oxide and functionalized graphene oxide in sulfonated polyethersulfone membrane. Renew. Energy 179, 788–801 (2021). https://doi.org/10.1016/j.renene.2021.07.080

    Article  CAS  Google Scholar 

  140. G.G. Kumar, S. Hashmi, C. Karthikeyan, A. GhavamiNejad, M. Vatankhah-Varnoosfaderani, F.J. Stadler, Graphene oxide/carbon nanotube composite hydrogels - Versatile materials for microbial fuel cell applications. Macromol. Rapid Commun. 35, 1861–1865 (2014). https://doi.org/10.1002/marc.201400332

    Article  CAS  PubMed  Google Scholar 

  141. A. Pareek, J. Shanthi Sravan, S. Venkata Mohan, Graphene modified electrodes for bioelectricity generation in mediator-less microbial fuel cell. J. Mater. Sci. 54, 11604–11617 (2019). https://doi.org/10.1007/s10853-019-03718-y

    Article  CAS  Google Scholar 

  142. S. Mondal, F. Papiya, S.N. Ash, P.P. Kundu, Composite membrane of sulfonated polybenzimidazole and sulfonated graphene oxide for potential application in microbial fuel cell. J. Environ. Chem. Eng. 9, 104945 (2021). https://doi.org/10.1016/j.jece.2020.104945

    Article  CAS  Google Scholar 

  143. M. Li, S. Zhou, M. Xu, Graphene oxide supported magnesium oxide as an efficient cathode catalyst for power generation and wastewater treatment in single chamber microbial fuel cells. Chem. Eng. J. 328, 106–116 (2017). https://doi.org/10.1016/j.cej.2017.07.031

    Article  CAS  Google Scholar 

  144. G. Gnana kumar, Z. Awan, K. Suk Nahm, J. Stanley Xavier, Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells. Biosens. Bioelectron. 53, 528–534 (2014). https://doi.org/10.1016/j.bios.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  145. A. Mehdinia, E. Ziaei, A. Jabbari, Jabbari, Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation. Int. J. Hydrogen Energy 39, 10724–10730 (2014). https://doi.org/10.1016/j.ijhydene.2014.05.008

    Article  CAS  Google Scholar 

  146. B. Mecheri, V.C.A. Ficca, M.A. Costa de Oliveira, A. D’Epifanio, E. Placidi, F. Arciprete, S. Licoccia, Facile synthesis of graphene-phthalocyanine composites as oxygen reduction electrocatalysts in microbial fuel cells. Appl. Catal. B: Environmental. 237, 699–707 (2018). https://doi.org/10.1016/j.apcatb.2018.06.031

    Article  CAS  Google Scholar 

  147. N. Najihah Mohamad Daud, M. Nasir Mohamad Ibrahim, A. Ali Yaqoob, A. Suriaty Yaakop, M. Hazwan Hussin, C.Y. Shen, A.A. AlObaid, Optimizing microbial fuel cells performance: An innovative approach integrating anode materials, dual-pollutant treatment, and long-term operation. Fuel. 364, 131160 (2024). https://doi.org/10.1016/j.fuel.2024.131160

    Article  CAS  Google Scholar 

  148. A.A. Yaqoob, M.N.M. Ibrahim, K. Umar, Biomass-derived composite anode electrode: Synthesis, characterizations, and application in microbial fuel cells (MFCs). J. Environ. Chem. Eng. 9, 106111 (2021). https://doi.org/10.1016/j.jece.2021.106111

    Article  CAS  Google Scholar 

  149. A.S. Alshammari, Impact of lignocellulosic biomass-derived graphene-titanium oxide nanocomposite as an electrode for sustainable performance in microbial fuel cell. Int. J. Environ. Sci. Technol. 21, 5185–5202 (2024). https://doi.org/10.1007/s13762-023-05348-z

    Article  CAS  Google Scholar 

  150. R. Wang, H. You, B. **e, G. Zhang, J. Zhu, W. Li, X. Dong, Q. Qin, M. Wang, Y. Ding, H. Tan, Y. Jia, Z. Li, Performance analysis of microbial fuel cell - membrane bioreactor with reduced graphene oxide enhanced polypyrrole conductive ceramic membrane: Wastewater treatment, membrane fouling and microbial community under high salinity. Sci. Total Environ. 907, 167827 (2024). https://doi.org/10.1016/j.scitotenv.2023.167827

    Article  CAS  PubMed  Google Scholar 

  151. M.L. Di Vona, S. Licoccia, P. Knauth, Organic–inorganic hybrid membranes based on sulfonated polyaryl–ether–ketones: Correlation between water uptake and electrical conductivity. Solid State Ionics 179, 1161–1165 (2008). https://doi.org/10.1016/j.ssi.2008.01.012

    Article  CAS  Google Scholar 

  152. B.G. Choi, Y.S. Huh, Y.C. Park, D.H. Jung, W.H. Hong, H. Park, Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets. Carbon 50, 5395–5402 (2012). https://doi.org/10.1016/j.carbon.2012.07.025

    Article  CAS  Google Scholar 

  153. X.H. Yan, R. Wu, J.B. Xu, Z. Luo, T.S. Zhao, A monolayer graphene – Nafion sandwich membrane for direct methanol fuel cells. J. Power Sources 311, 188–194 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.030

    Article  CAS  Google Scholar 

  154. Z. Jiang, X. Zhao, Y. Fu, A. Manthiram, Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells. J. Mater. Chem. 22, 24862–24869 (2012). https://doi.org/10.1039/C2JM35571J

    Article  CAS  Google Scholar 

  155. Y. Jiao, M. **ng, P. Estellé, Efficient utilization of hybrid photovoltaic/thermal solar systems by nanofluid-based spectral beam splitting: A review. Solar Energy Mater. Solar Cells 265, 112648 (2024). https://doi.org/10.1016/j.solmat.2023.112648

    Article  CAS  Google Scholar 

  156. Z.-E. Shi, K.-L. Teng, B.-H. Jiang, C. Kit Chan, Y.-H. Yu, C.-P. Chen, Iron complex/graphene oxide hybrid modification of ZnO surface for achieving stable inverted organic photovoltaics. Appl. Surf. Sci. 648, 159051 (2024). https://doi.org/10.1016/j.apsusc.2023.159051

    Article  CAS  Google Scholar 

  157. I. Boukhoubza, M. Khenfouch, M. Achehboune, L. Leontie, A. Carlescu, C. Doroftei, B.M. Mothudi, I. Zorkani, A. Jorio, Graphene oxide coated flower-shaped ZnO nanorods: Optoelectronic properties. J. Alloys Compd. 831, 154874 (2020). https://doi.org/10.1016/j.jallcom.2020.154874

    Article  CAS  Google Scholar 

  158. A. Sakshi Joshi, S. Leela, E. Elamurugu, T. Deeparani, Influence of GO and rGO on the structural and optical properties of ZnO photoelectrodes for energy harvesting applications. Mater. Sci. Eng.: B 299, 116938 (2024). https://doi.org/10.1016/j.mseb.2023.116938

    Article  CAS  Google Scholar 

  159. S. Ndlovu, E. Muchuweni, M.A. Ollengo, V.O. Nyamori, Highly efficient nitrogen-doped reduced graphene oxide-Sr0.7Sm0.3Fe04Co0.6O2.65 nanocomposites utilized as a counter electrode in dye-sensitized solar cells. Mater. Today Commun. 38, 107681 (2024). https://doi.org/10.1016/j.mtcomm.2023.107681

    Article  CAS  Google Scholar 

  160. M. Chinnarani, S. Suresh, K.M. Prabu, M. Kandasamy, N. Pugazhenthiran, Facile synthesis of reduced graphene oxide and graphitic carbon nitride modified titanium dioxide nanospheres for photoanode of dye-sensitized solar cell. Inorganica Chimica Acta. 560, 121842 (2024). https://doi.org/10.1016/j.ica.2023.121842

    Article  CAS  Google Scholar 

  161. R. Wennersten, S. Qie, United Nations Sustainable Development Goals for 2030 and Resource Use BT - Handbook of Sustainability Science and Research, in: W. Leal Filho (Arg.), Springer International Publishing, Cham, 2018: or. 317–339. https://doi.org/10.1007/978-3-319-63007-6_19

  162. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318–345 (2009). https://doi.org/10.1016/j.rser.2007.10.005

    Article  CAS  Google Scholar 

  163. R.K. Sharma, P. Ganesan, V.V. Tyagi, H.S.C. Metselaar, S.C. Sandaran, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers. Manag. 95, 193–228 (2015). https://doi.org/10.1016/j.enconman.2015.01.084

    Article  CAS  Google Scholar 

  164. V. Perumal, A. Sabarinathan, M. Chandrasekar, M. Subash, C. Inmozhi, R. Uthrakumar, A.B. Isaev, A. Raja, M.S. Elshikh, S. Musaed Almutairi, K. Kaviyarasu, Hierarchical nanorods of graphene oxide decorated SnO2 with high photocatalytic performance for energy conversion applications. Fuel 324, 124599 (2022). https://doi.org/10.1016/j.fuel.2022.124599

    Article  CAS  Google Scholar 

  165. J. Hao, Y. Ning, Y. Hou, S. Ma, C. Lin, J. Zhao, C. Li, X. Sui, Polydopamine functionalized graphene oxide membrane with the sandwich structure for osmotic energy conversion. J. Colloid Interface Sci. 630, 795–803 (2023). https://doi.org/10.1016/j.jcis.2022.10.084

    Article  CAS  PubMed  Google Scholar 

  166. L.S. Tang, J. Yang, R.Y. Bao, Z.Y. Liu, B.H. **e, M.B. Yang, W. Yang, Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide. Energy Convers. Manage. 146, 253–264 (2017). https://doi.org/10.1016/j.enconman.2017.05.037

    Article  CAS  Google Scholar 

  167. Z. Han, S. Ullah, G. Zheng, H. Yin, J. Zhao, S. Cheng, X. Wang, J. Yang, The thermal-to-electrical energy conversion in (Bi0.5Na0.5)0.94Ba0.06TiO3/graphene oxide heterogeneous structures. Ceram. Int. 45, 24493–24499 (2019). https://doi.org/10.1016/j.ceramint.2019.08.175

    Article  CAS  Google Scholar 

  168. C. Zhang, F. Dang, Y. Chen, Y. Yan, Y. Liu, X. Chen, Vibration-to-electric energy conversion with porous graphene oxide-nickel electrode. J. Power Sources 368, 73–77 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.074

    Article  CAS  Google Scholar 

  169. J. Yang, L.S. Tang, R.Y. Bao, L. Bai, Z.Y. Liu, B.H. **e, M.B. Yang, W. Yang, Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol. Energy Mater. Sol. Cells 174, 56–64 (2018). https://doi.org/10.1016/j.solmat.2017.08.025

    Article  CAS  Google Scholar 

  170. O.M. Maithya, X. Zhu, X. Li, S.J. Korir, X. Feng, X. Sui, B. Wang, High-energy storage graphene oxide modified phase change microcapsules from regenerated chitin Pickering Emulsion for photothermal conversion. Sol. Energy Mater. Sol. Cells 222, 110924 (2021). https://doi.org/10.1016/j.solmat.2020.110924

    Article  CAS  Google Scholar 

  171. M. Supur, Y. Kawashima, K. Mase, K. Ohkubo, T. Hasobe, S. Fukuzumi, Broadband light harvesting and fast charge separation in ordered self-assemblies of electron donor-acceptor-functionalized graphene oxide layers for effective solar energy conversion. J. Phys. Chem. C 119, 13488–13495 (2015). https://doi.org/10.1021/acs.jpcc.5b03303

    Article  CAS  Google Scholar 

  172. S. Ameen, M.S. Akhtar, M. Song, H.S. Shin, Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: Solar energy conversion. ACS Appl. Mater. Interfaces. 4, 4405–4412 (2012). https://doi.org/10.1021/am301064j

    Article  CAS  PubMed  Google Scholar 

  173. Y. Qian, D. Liu, G. Yang, L. Wang, Y. Liu, C. Chen, X. Wang, W. Lei, Boosting osmotic energy conversion of graphene oxide membranes via self-exfoliation behavior in nano-confinement spaces. J. Am. Chem. Soc. 144, 13764–13772 (2022). https://doi.org/10.1021/jacs.2c04663

    Article  CAS  PubMed  Google Scholar 

  174. N. Sheng, S. Chen, M. Zhang, Z. Wu, Q. Liang, P. Ji, H. Wang, TEMPO-oxidized bacterial cellulose nanofibers/graphene oxide fibers for osmotic energy conversion. ACS Appl. Mater. Interfaces. 13, 22416–22425 (2021). https://doi.org/10.1021/acsami.1c03192

    Article  CAS  PubMed  Google Scholar 

  175. J.-J. Shao, W. Lv, Q.-H. Yang, Self-assembly of graphene oxide at interfaces. Adv. Mater. 26, 5586–5612 (2014). https://doi.org/10.1002/adma.201400267

    Article  CAS  PubMed  Google Scholar 

  176. W. Du, H. Wu, H. Chen, G. Xu, C. Li, Graphene oxide in aqueous and nonaqueous media: Dispersion behaviour and solution chemistry. Carbon 158, 568–579 (2020). https://doi.org/10.1016/j.carbon.2019.11.027

    Article  CAS  Google Scholar 

  177. S. Chuah, W. Li, S.J. Chen, J.G. Sanjayan, W.H. Duan, Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments. Constr. Build. Mater. 161, 519–527 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.154

    Article  CAS  Google Scholar 

  178. D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014). https://doi.org/10.1016/j.jcis.2014.05.033

    Article  CAS  PubMed  Google Scholar 

  179. S. Kashyap, S. Mishra, S.K. Behera, Aqueous colloidal stability of graphene oxide and chemically converted graphene. J. Nanoparticles 2014, 1–6 (2014). https://doi.org/10.1155/2014/640281

    Article  CAS  Google Scholar 

  180. M. Wang, Y. Niu, J. Zhou, H. Wen, Z. Zhang, D. Luo, D. Gao, J. Yang, D. Liang, Y. Li, The dispersion and aggregation of graphene oxide in aqueous media. Nanoscale 8, 14587–14592 (2016). https://doi.org/10.1039/c6nr03503e

    Article  CAS  PubMed  Google Scholar 

  181. I. Chowdhury, M.C. Duch, N.D. Mansukhani, M.C. Hersam, D. Bouchard, Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environ. Sci. Technol. 47, 6288–6296 (2013). https://doi.org/10.1021/es400483k

    Article  CAS  PubMed  Google Scholar 

  182. M.M. Gudarzi, Colloidal stability of graphene oxide: Aggregation in two dimensions. Langmuir 32, 5058–5068 (2016). https://doi.org/10.1021/acs.langmuir.6b01012

    Article  CAS  PubMed  Google Scholar 

  183. C.N. Yeh, K. Raidongia, J. Shao, Q.H. Yang, J. Huang, On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170 (2015). https://doi.org/10.1038/nchem.2145

    Article  CAS  Google Scholar 

  184. J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008). https://doi.org/10.1021/la801744a

    Article  CAS  PubMed  Google Scholar 

  185. M.S. Samuel, E. Selvarajan, K. Subramaniam, T. Mathimani, S. Seethappan, A. Pugazhendhi, Synthesized β-cyclodextrin modified graphene oxide (β-CD-GO) composite for adsorption of cadmium and their toxicity profile in cervical cancer (HeLa) cell lines. Process Biochem. 93, 28–35 (2020). https://doi.org/10.1016/j.procbio.2020.02.014

    Article  CAS  Google Scholar 

  186. T. Kavinkumar, K. Varunkumar, V. Ravikumar, S. Manivannan, Anticancer activity of graphene oxide-reduced graphene oxide-silver nanoparticle composites. J. Colloid Interf. Sci. 505, 1125–1133 (2017). https://doi.org/10.1016/j.jcis.2017.07.002

    Article  CAS  Google Scholar 

  187. M. Martí, B. Frígols, B. Salesa, Á. Serrano-Aroca, Calcium alginate/graphene oxide films: Reinforced composites able to prevent Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis infections with no cytotoxicity for human keratinocyte HaCaT cells. Euro. Polym. J. 110, 14–21 (2019). https://doi.org/10.1016/j.eurpolymj.2018.11.012

    Article  CAS  Google Scholar 

  188. W. Shao, H. Liu, X. Liu, S. Wang, R. Zhang, Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. RSC Adv. 5, 4795–4803 (2015). https://doi.org/10.1039/c4ra13057j

    Article  CAS  Google Scholar 

  189. X. Zhou, M. Dorn, J. Vogt, D. Spemann, W. Yu, Z. Mao, I. Estrela-Lopis, E. Donath, C. Gao, A quantitative study of the intracellular concentration of graphene/noble metal nanoparticle composites and their cytotoxicity. Nanoscale 6, 8535–8542 (2014). https://doi.org/10.1039/c4nr01763c

    Article  CAS  PubMed  Google Scholar 

  190. R. Eivazzadeh-Keihan, F. Radinekiyan, H. Madanchi, H.A.M. Aliabadi, A. Maleki, Graphene oxide/alginate/silk fibroin composite as a novel bionanostructure with improved blood compatibility, less toxicity and enhanced mechanical properties. Carbohyd. Polym. 248, 116802 (2020). https://doi.org/10.1016/j.carbpol.2020.116802

    Article  CAS  Google Scholar 

  191. A. Katsumiti, R. Tomovska, M.P. Cajaraville, Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro. Aquat. Toxicol. 188, 138–147 (2017). https://doi.org/10.1016/j.aquatox.2017.04.016

    Article  CAS  PubMed  Google Scholar 

  192. L.A.V. de Luna, A.C.M. de Moraes, S.R. Consonni, C.D. Pereira, S. Cadore, S. Giorgio, O.L. Alves, Comparative in vitro toxicity of a graphene oxide-silver nanocomposite and the pristine counterparts toward macrophages. J. Nanobiotechnol. 14, 12 (2016). https://doi.org/10.1186/s12951-016-0165-1

    Article  CAS  Google Scholar 

  193. S. Raj, H. Singh, A.K. Hansda, R. Goswami, J. Bhattacharya, Performance and cell toxicity studies for the use of graphene oxide-bimetallic oxide hybrids in the absorptive removal of Pb(II) from wastewater: fixed-bed column study with regeneration. Environ. Sci. Pollut. Res. (2023). https://doi.org/10.1007/s11356-023-25825-9

    Article  Google Scholar 

  194. R. Liman, R. Ilikci-Sagkan, E.S. Istifli, K. Atacan, S. Erdemir, S.Z. Bas, M. Ozmen, Preparation of graphene-based nanocomposites with spinel ferrite nanoparticles: Their cytotoxic levels in different human cell lines and molecular docking studies. J. Organometall. Chem. 990, 122660 (2023). https://doi.org/10.1016/j.jorganchem.2023.122660

    Article  CAS  Google Scholar 

  195. Y. Sun, A. Huang, Z. Zhao, C. Song, G. Lai, [Immunogenic and toxic effects of graphene oxide nanoparticles in mouse skeletal muscles and human red blood cells]. Nan fang yi ke da xue xue bao. J. Southern Med. Univ. 44, 617–626 (2024). https://doi.org/10.12122/j.issn.1673-4254.2024.04.01

    Article  Google Scholar 

  196. S. Shakibaie, H. Joze-Majidi, E. Zabihi, M. Ramezani, S. Ebrahimi, Z. Arab-Bafrani, E. Mousavi, Development and characterization of graphene oxide-locust bean gum-zinc oxide (GO-LBG-ZnO) nanohybrid as an efficient and novel antitumor agent against hepatocarcinoma cells. J. Polym. Environ. (2024). https://doi.org/10.1007/s10924-023-03184-3

    Article  Google Scholar 

  197. A. Debroy, N. Roy, S. Giri, M. Pulimi, N. Chandrasekaran, W.J.G.M. Peijnenburg, A. Mukherjee, EPS-corona formation on graphene family nanomaterials (GO, rGO and graphene) and its role in mitigating their toxic effects in the marine alga Chlorella sp. Environ. Pollut. 341, 123015 (2024). https://doi.org/10.1016/j.envpol.2023.123015

    Article  CAS  PubMed  Google Scholar 

  198. I.A.A. Ibrahim, A.R. Alzahrani, I.M. Alanazi, N. Shahzad, I. Shahid, A.H. Falemban, M.F. Nur Azlina, P. Arulselvan, Synthesis and characterization of graphene oxide/polyethylene glycol/folic acid/brucine nanocomposites and their anticancer activity on HepG2 cells. Int. J. Nanomed. 19, 1109–1124 (2024). https://doi.org/10.2147/IJN.S445206

    Article  CAS  Google Scholar 

  199. M.A. Ramadan, S. Gad, M. Sharaky, A.H. Faid, Laser photostability of chitosan coated gold-GO nanocomposite and its role as a nano-therapeutic agent for control breast cancer growth. Disc. Appl. Sci. 6, 170 (2024). https://doi.org/10.1007/s42452-024-05808-2

    Article  Google Scholar 

  200. S. Azizighannad, S. Mitra, Stepwise reduction of graphene oxide (GO) and its effects on chemical and colloidal properties. Sci. Rep. 8, 10083 (2018). https://doi.org/10.1038/s41598-018-28353-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. K.-H. Liao, Y.-S. Lin, C.W. Macosko, C.L. Haynes, Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Appl. Mater. Interfaces. 3, 2607–2615 (2011). https://doi.org/10.1021/am200428v

    Article  CAS  PubMed  Google Scholar 

  202. T. Wang, S. Zhu, X. Jiang, Toxicity mechanism of graphene oxide and nitrogen-doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy, Toxicology. Research 4, 885–894 (2015). https://doi.org/10.1039/c4tx00138a

    Article  CAS  Google Scholar 

  203. S. Gurunathan, M.-H. Kang, M. Jeyaraj, J.-H. Kim, Differential cytotoxicity of different sizes of graphene oxide nanoparticles in Leydig (TM3) and Sertoli (TM4) cells. Nanomater. 9, (2019). https://doi.org/10.3390/nano9020139

  204. A.N. Ghulam, O.A.L. dos Santos, L. Hazeem, B. Pizzorno Backx, M. Bououdina, S. Bellucci, Graphene Oxide (GO) Materials—Applications and toxicity on living organisms and environment. J. Funct. Biomater. 13, (2022). https://doi.org/10.3390/jfb13020077

  205. M.S. Samuel, E. Selvarajan, K. Subramaniam, T. Mathimani, S. Seethappan, A. Pugazhendhi, Synthesized β-cyclodextrin modified graphene oxide (β-CD-GO) composite for adsorption of cadmium and their toxicity profile in cervical cancer (HeLa) cell lines. Process Biochem. 93, 28–35 (2020). https://doi.org/10.1016/j.procbio.2020.02.014

    Article  CAS  Google Scholar 

  206. Y.-W. Wang, A. Cao, Y. Jiang, X. Zhang, J.-H. Liu, Y. Liu, H. Wang, Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interfaces. 6, 2791–2798 (2014). https://doi.org/10.1021/am4053317

    Article  CAS  PubMed  Google Scholar 

  207. Y. Liu, Q. Fan, Y. Huo, C. Liu, B. Li, Y. Li, Construction of a mesoporous polydopamine@GO/cellulose nanofibril composite hydrogel with an encapsulation structure for controllable drug release and toxicity shielding. ACS Appl. Mater. Interfaces. 12, 57410–57420 (2020). https://doi.org/10.1021/acsami.0c15465

    Article  CAS  PubMed  Google Scholar 

  208. Z. Guo, J. Zuo, J. Feng, J. Li, S. Zhang, K. Ma, Impact of Titanium Dioxide-Graphene Oxide (TiO(2)-GO) Composite Nanoparticle on the Juveniles of the Giant River Prawn, Macrobrachium rosenbergii: Physio-Biochemistry and Transcriptional Response., Marine Biotechnology (New York, N.Y.). 25, 45–56 (2023). https://doi.org/10.1007/s10126-022-10180-6

  209. X. Wang, L. Dai, S. He, Y. Wang, Y. Zhang, A novel biomineralization regulation strategy to fabricate schwertmannite/graphene oxide composite for effective light-assisted oxidative degradation of sulfathiazole. Sep. Purif. Technol. 312, 123314 (2023). https://doi.org/10.1016/j.seppur.2023.123314

    Article  CAS  Google Scholar 

  210. D.P. Singh, C.E. Herrera, B. Singh, S. Singh, R.K. Singh, R. Kumar, Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Mater. Sci. Eng.: C 86, 173–197 (2018). https://doi.org/10.1016/j.msec.2018.01.004

    Article  CAS  Google Scholar 

  211. J.R. Ramya, K.T. Arul, R. Ilangovan, P. Sathiamurthi, K. Asokan, C.L. Dong, A. Arockiarajan, S.N. Kalkura, Surface engineering of poly(methyl methacrylate)–reduced graphene oxide composite films by Au7+ ion irradiation for biomedical application. Radiat. Phys. Chem. 195, 110051 (2022). https://doi.org/10.1016/j.radphyschem.2022.110051

    Article  CAS  Google Scholar 

  212. Y.R. Mukhortova, A.S. Pryadko, R.V. Chernozem, I.O. Pariy, E.A. Akoulina, I.V. Demianova, I.I. Zharkova, Y.F. Ivanov, D.V. Wagner, A.P. Bonartsev, R.A. Surmenev, M.A. Surmeneva, Fabrication and characterization of a magnetic biocomposite of magnetite nanoparticles and reduced graphene oxide for biomedical applications. Nano-Struct. Nano-Objects 29, 100843 (2022). https://doi.org/10.1016/j.nanoso.2022.100843

    Article  CAS  Google Scholar 

  213. A. Joy, G. Unnikrishnan, M. Megha, P.D. Duraisamy, A. Angamuthu, M. Haris, E. Kolanthai, S. Muthuswamy, Facile synthesis of visible region luminescent silver decorated graphene oxide nanohybrid for biomedical applications: In combination with DFT calculations. Mater. Today: Proceedings 58, 918–926 (2022). https://doi.org/10.1016/j.matpr.2021.12.108

    Article  CAS  Google Scholar 

  214. A. Joy, G. Unnikrishnan, M. Megha, M. Haris, J. Thomas, E. Kolanthai, M. Senthilkumar, Hybrid gold/graphene oxide reinforced polycaprolactone nanocomposite for biomedical applications. Surf. Interf. 40, 103000 (2023). https://doi.org/10.1016/j.surfin.2023.103000

    Article  CAS  Google Scholar 

  215. K. Biswas, Ultrsonication mediated Iron-doped reduced graphene oxide nano-sheets exhibiting unique physico-chemical properties and biomedical applications. Mater. Chem. Phys. 291, 126687 (2022). https://doi.org/10.1016/j.matchemphys.2022.126687

    Article  CAS  Google Scholar 

  216. A. Joy, G. Unnikrishnan, M. Megha, M. Haris, J. Thomas, A. Deepti, P.S. Baby Chakrapani, E. Kolanthai, S. Muthuswamy, A novel combination of graphene oxide/palladium integrated polycaprolactone nanocomposite for biomedical applications. Diamond Relat. Mater. 136, 110033 (2023). https://doi.org/10.1016/j.diamond.2023.110033

    Article  CAS  Google Scholar 

  217. T.A. Saleh, G. Fadillah, Recent trends in the design of chemical sensors based on graphene–metal oxide nanocomposites for the analysis of toxic species and biomolecules. TrAC Trends Anal. Chem. 120, 115660 (2019). https://doi.org/10.1016/j.trac.2019.115660

    Article  CAS  Google Scholar 

  218. H. Begum, M.S. Ahmed, S. Jeon, New approach for porous chitosan-graphene matrix preparation through enhanced amidation for synergic detection of dopamine and uric acid. ACS Omega 2, 3043–3054 (2017). https://doi.org/10.1021/acsomega.7b00331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. H. Huang, S. Su, N. Wu, H. Wan, S. Wan, H. Bi, L. Sun, Graphene-based sensors for human health monitoring. Front. Chem. 7, 399 (2019). https://doi.org/10.3389/fchem.2019.00399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Q. Zhao, S. Ma, H. Zhang, M. Ren, Olfactory-inspired neuromorphic artificial respiratory perception system with graphene oxide humidity sensor and organic electrochemical transistor. Carbon 218, 118765 (2024). https://doi.org/10.1016/j.carbon.2023.118765

    Article  CAS  Google Scholar 

  221. M.D. Shirsat, Highly sensitive and selective chemirestive sensor for detection of carbon monoxide based on iron substituted octaethylporphyrin functionalized reduced graphene oxide. Chem. Phys. 112156 (2023). https://doi.org/10.1016/j.chemphys.2023.112156

  222. K. Han, Y. Li, Flexible parallel-type capacitive humidity sensors based on the composite of polyimide aerogel and graphene oxide with capability of detecting water content both in air and liquid. Sens. Actuators B Chem. 401, 135050 (2024). https://doi.org/10.1016/j.snb.2023.135050

    Article  CAS  Google Scholar 

  223. M. Cheng, L. Huang, Y. Wang, J. Tang, Y. Wang, Y. Zhao, G. Liu, Y. Zhang, M.J. Kipper, S.R. Wickramasinghe, Reduced graphene oxide–gold nanoparticle membrane for water purification. Sep. Sci. Technol. 54, 1079–1085 (2019). https://doi.org/10.1080/01496395.2018.1525400

    Article  CAS  Google Scholar 

  224. L.Y. Ng, H.S. Chua, C.Y. Ng, 2021 Incorporation of graphene oxide-based nanocomposite in the polymeric membrane for water and wastewater treatment: A review on recent development. J. Environ. Chem. Eng. 9, 105994 (2021). https://doi.org/10.1016/j.jece.2021.105994

    Article  CAS  Google Scholar 

  225. C. Tewari, M. Pathak, G. Tatrari, S. Kumar, S. Dhali, B. Saha, P. Mukhopadhyay, Y. Chae Jung, N. Gopal Sahoo, Waste plastics derived reduced graphene oxide-based nanocomposite with Fe3O4 for water purification and supercapacitor applications. J. Ind. Eng. Chem. 130, 346–356 (2023). https://doi.org/10.1016/j.jiec.2023.09.038

    Article  CAS  Google Scholar 

  226. S. Gayen, B. Bej, S. Sankar Boxi, R. Ghosh, Synthesis of graphene oxide and its application for purification of river water. Mater. Today: Proceedings 72, 2630–2636 (2023). https://doi.org/10.1016/j.matpr.2022.08.131

    Article  CAS  Google Scholar 

  227. J.K. Jose, B. Mishra, K.P. Kootery, C.T. Cherian, B.P. Tripathi, S. Saro**i, M. Balachandran, Fabrication of silver nanoparticle decorated graphene oxide membranes for water purification, antifouling and antibacterial applications. Mater. Sci. Eng. B 297, 116789 (2023). https://doi.org/10.1016/j.mseb.2023.116789

    Article  CAS  Google Scholar 

  228. C.-Z. Zhang, Y. Yuan, Z. Guo, Experimental study on functional graphene oxide containing many primary amino groups fast-adsorbing heavy metal ions and adsorption mechanism. Sep. Sci. Technol. 53, 1666–1677 (2018). https://doi.org/10.1080/01496395.2018.1436071

    Article  CAS  Google Scholar 

  229. Y. Liang, B. Chen, M. Li, J. He, Z. Yin, B. Guo, Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing. Biomacromol 21, 1841–1852 (2020). https://doi.org/10.1021/acs.biomac.9b01732

    Article  CAS  Google Scholar 

  230. C.D. Williams, P. Carbone, F.R. Siperstein, In silico design and characterization of graphene oxide membranes with variable water content and flake oxygen content. ACS Nano 13, 2995–3004 (2019). https://doi.org/10.1021/acsnano.8b07573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. C. **e, X. Lu, L. Han, J. Xu, Z. Wang, L. Jiang, K. Wang, H. Zhang, F. Ren, Y. Tang, Biomimetic mineralized hierarchical graphene oxide/chitosan scaffolds with adsorbability for immobilization of nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces. 8, 1707–1717 (2016). https://doi.org/10.1021/acsami.5b09232

    Article  CAS  PubMed  Google Scholar 

  232. C. Hu, Y. Yang, Y. Lin, L. Wang, R. Ma, Y. Zhang, X. Feng, J. Wu, L. Chen, L. Shao, GO-based antibacterial composites: Application and design strategies. Adv. Drug Deliv. Rev. 178, 113967 (2021). https://doi.org/10.1016/j.addr.2021.113967

    Article  CAS  PubMed  Google Scholar 

  233. W. Yu, X. Li, J. He, Y. Chen, L. Qi, P. Yuan, K. Ou, F. Liu, Y. Zhou, X. Qin, Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles. J. Colloid Interface Sci. 584, 164–173 (2021). https://doi.org/10.1016/j.jcis.2020.09.092

    Article  CAS  PubMed  Google Scholar 

  234. S. Shahmoradi, H. Golzar, M. Hashemi, V. Mansouri, M. Omidi, F. Yazdian, A. Yadegari, L. Tayebi, Optimizing the nanostructure of graphene oxide / silver / arginine for effective wound healing. Nanotechnology 29, 475101 (2018). https://doi.org/10.1088/1361-6528/aadedc

    Article  CAS  PubMed  Google Scholar 

  235. Q. Zhang, K. He, H. Huo, Cleaning China’s air. Nature 484, 161–162 (2012). https://doi.org/10.1038/484161a

    Article  CAS  PubMed  Google Scholar 

  236. Z.-R. Peng, D. Wang, Z. Wang, Y. Gao, S. Lu, A study of vertical distribution patterns of PM2.5 concentrations based on ambient monitoring with unmanned aerial vehicles: A case in Hangzhou, China. Atmos. Environ. 123, 357–369 (2015). https://doi.org/10.1016/j.atmosenv.2015.10.074

    Article  CAS  Google Scholar 

  237. V.A. Alex, T. Deosarkar, C.N.A. Mukherjee, An ultra-sensitive and selective AChE based colorimetric detection of malathion using silver nanoparticle-graphene oxide (Ag-GO) nanocomposite. Analytica Chimica Acta. 1142, 73–83 (2021). https://doi.org/10.1016/j.aca.2020.10.057

    Article  CAS  Google Scholar 

  238. S. Zhang, X. Tang, H. Zheng, D. Wang, Z. **e, W. Ding, X. Zheng, Combination of bacitracin-based flocculant and surface enhanced Raman scattering labels for flocculation, identification and sterilization of multiple bacteria in water treatment. J. Hazard. Mater. 407, 124389 (2021). https://doi.org/10.1016/j.jhazmat.2020.124389

    Article  CAS  PubMed  Google Scholar 

  239. R.K.R. Karduri, Cobalt in battery production : Implications for the mining community. 10, 9–15 (2023). https://doi.org/10.13140/RG.2.2.19114.80327

  240. Y. Liu, H. Shi, Z.S. Wu, Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energy Environ. Sci. 4834–4871 (2023). https://doi.org/10.1039/d3ee02213g

  241. Y.-T. Liu, S. Liu, G.-R. Li, X.-P. Gao, Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 33, 2003955 (2021). https://doi.org/10.1002/adma.202003955

    Article  CAS  Google Scholar 

  242. Y. Zhao, L.P. Wang, M.T. Sougrati, Z. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z. Xu, A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance li and na ion battery anodes. Adv. Energy Mater. 7, 1601424 (2017). https://doi.org/10.1002/aenm.201601424

    Article  CAS  Google Scholar 

  243. K. Khan, A.K. Tareen, M. Aslam, A. Mahmood, Q. Khan, Y. Zhang, Z. Ouyang, Z. Guo, H. Zhang, Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Prog. in Solid State Chem. 58, 100254 (2020). https://doi.org/10.1016/j.progsolidstchem.2019.100254

    Article  CAS  Google Scholar 

  244. Y. Zhang, Z. Gao, N. Song, J. He, X. Li, Graphene and its derivatives in lithium–sulfur batteries. Mater. Today Energy 9, 319–335 (2018). https://doi.org/10.1016/j.mtener.2018.06.001

    Article  Google Scholar 

  245. Z. Li, S. Gadipelli, Y. Yang, G. He, J. Guo, J. Li, Y. Lu, C.A. Howard, D.J.L. Brett, I.P. Parkin, F. Li, Z. Guo, Exceptional supercapacitor performance from optimized oxidation of graphene-oxide. Energy Storage Mater. 17, 12–21 (2019). https://doi.org/10.1016/j.ensm.2018.12.006

    Article  Google Scholar 

  246. P. Zhang, Z. Li, S. Zhang, G. Shao, Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage. Energy Environ. Mater. 1, 5–12 (2018). https://doi.org/10.1002/eem2.12001

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Anirudh Pratap Singh Raman, Mohd. Aslam, Naina, Ayushi Prajapat and Pallavi Jain – Collected the data, literature and draft writing;  Chandrabhan Verma, Akram AlFantazi, Prashant Singh, Kamlesh Kumari - Conceptualization and finalization of the manuscript.

Corresponding authors

Correspondence to Chandrabhan Verma, Prashant Singh or Kamlesh Kumari.

Ethics declarations

Ethical Approval

Not Applicable.

Competing Interests

I, Prashant Singh, the Corresponding author on behalf of all authors declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere. I further confirm that the order of authors listed in the manuscript has been approved by all of us. There is also no conflict of interest in any way.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Anirudh Pratap Singh Raman and Mohd Aslam are equal authorship.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 831 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raman, A.P.S., Aslam, M., Naina et al. Composite Nanoarchitectonics based on Graphene Oxide in Energy Storage and Conversion: Status, Challenges & Opportunities. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03154-9

Keywords

Navigation