Log in

Raman Spectroscopy, Physical Parameters and γ-Ray Shielding Competence of Newly Lu3+ Ions Doped Borosilicate Glasses

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present study, a newly set of lutetium(III)-doped borosilicate glasses with the chemical formula (49–x)B2O3 + 13SiO2 + 18CaO + 20Li2O + XLu2O3: X takes values from 0 (Lu0.0) to 2 (Lu2.0) at intervals of 0.5 mol% has been prepared via the traditional quenching technique. The impact of the inclusion Lu3+ ions in the glasses network on the physical, and Raman spectroscopy has been investigated. XRD measurements confirmed the amorphous state of Lu-X glasses. The density (ρ) of Lu-X glasses varied from 25.10 × 10–1 g/cm3 for Lu0.0 glass sample to 26.40 × 10–1 g/cm3 for Lu-2.0 glasses. The molar volume (Vm) of Lu-X glasses was increased from 23.10 to 24.37 cm3/mol as Lu2O3 content increased from 0 to 2 mol%. The oxygen packing density (OPD) values reduced from 91.33 to 86.59 g atm/l. The oxygen molar volume (VO) values enhanced from 10.95 to 11.55 cm3/mol. The average boron–boron separation ⟨dB−B⟩ slightly changed in the glass matrix. The inclusion of Lu3+ ions into the host matrix of the Lu-X glasses leads to convert certain BO3 groups into BO4 groups, hence enhancing the amount of non-bridging oxygen bonds (NBOs). This fact is confirmed by Raman spectroscopy. The linear-(µ) attenuation absorption follows the order: (µ)Lu0.0 < (µ)Lu0.5 < (µ)Lu1.0 < (µ)Lu1.5 < (µ)Lu2.0. Values of half-value layer (HVL) follow the trend: (HVL)Lu0.0 > (HVL)Lu0.5 > (HVL)Lu1.0 > (HVL)Lu1.5 > (HVL)Lu2.0. Lu2.0 glass is located in the mid-point or a suitable point among the commercial concrete materials as γ-ray shields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Bengisu, Borate glasses for scientific and industrial applications: a review. J. Mater. Sci. 51, 2199–2242 (2016)

    Article  ADS  CAS  Google Scholar 

  2. W.C. Lepry, S.N. Nazhat, A review of phosphate and borate sol–gel glasses for biomedical applications. Adv. NanoBiomed Res. 1(3), 2000055 (2021)

    Article  CAS  Google Scholar 

  3. H.A. Abo-Mosallam, E.A. Mahdy, Crystallization behavior and properties of fluorcanasite–lithium disilicate glasses for potential use in dental application. Ceramics Int. 45, 21144–21149 (2019)

    Article  CAS  Google Scholar 

  4. A. Jha, B.D.O. Richards, G. Jose, T. Toney Fernandez, C.J. Hill, J. Lousteau, P. Joshi, Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications. Int. Mater. Rev. 57(6), 357–382 (2012)

    Article  CAS  Google Scholar 

  5. M.K. Hossain, S. Hossain, M.H. Ahmed, M.I. Khan, N. Haque, G.A. Raihan, A review on optical applications, prospects, and challenges of rare-earth oxides. ACS Appl. Electron. Mater. 3(9), 3715–3746 (2021)

    Article  CAS  Google Scholar 

  6. M.K. Hossain, M.I. Khan, A. El-Denglawey, A review on biomedical applications, prospects, and challenges of rare earth oxides. Appl. Mater. Today 24, 101104 (2021)

    Article  Google Scholar 

  7. P. Glumglomchit, J. Rajagukguk, J. Kaewkhao, K. Kirdsiri, A novel radiation shielding material for gamma-ray: the development of lutetium lithium borate glasses. Key Eng. Mater. 766, 246–251 (2018)

    Article  Google Scholar 

  8. P. Glumglomchit, J. Rajagukguk, J. Kaewkhao, K. Kirdsiri, Physical and optical investigation of lutetium-sodium-borate glasses. Mater. Today Proc. 5(7), 15054–15060 (2018)

    Article  CAS  Google Scholar 

  9. C. Wu, L. Li, L. Lin, Z. Huang, M.G. Humphrey, C. Zhang, Enhancement of second-order optical nonlinearity in a lutetium selenite by monodentate anion partial substitution. Chem. Mater. 32(7), 3043–3053 (2020)

    Article  CAS  Google Scholar 

  10. M.L. Carrera Jota, A. García Murillo, F. Carrillo Romo, M. García Hernández, Ad.J. Morales Ramírez, S. Velumani, E. de la Rosa Cruz, A. Kassiba, Lu2O3:Eu3+ glass ceramic films: synthesis, structural and spectroscopic studies. Mater. Res. Bull. 51, 418–425 (2014)

    Article  CAS  Google Scholar 

  11. L. Fan, M. Wang, T. Wang, X. Gao, Y. Shi, Elaboration and luminescence of cerium-doped lutetium silicate glass-ceramics via in-situ growth from containerless processed lutetium silicate glass. J Non-Cryst. Solids 577, 121317 (2022)

    Article  CAS  Google Scholar 

  12. B. Miao, Q. Chen, W. Chen, The role of 4f14 Lu3+ and 3d0 Sc3+ in faraday rotating glass/ceramic: structural stability, magnetic and magneto optical properties. Ceram. Int. 48(9), 12193–12208 (2022)

    Article  CAS  Google Scholar 

  13. S. Perevoschikov, N. Kaydanov, T. Ermatov, O. Bibikova, I. Usenov, T. Sakharova, A. Bocharnikov, J. Skibina, V. Artyushenko, D. Gorin, Light guidance up to 6.5 µm in borosilicate soft glass hollow-core microstructured optical waveguides. Opt. Exp. 28(19), 27940–27950 (2020)

    Article  CAS  Google Scholar 

  14. N. Nishioka, H. Hidai, S. Matsusaka, A. Chiba, N. Morita, Continuous-wave laser-induced glass fiber generation. Appl. Phys. A 123, 1–7 (2017)

    Article  CAS  Google Scholar 

  15. C. Cheng, F. Wang, X. Cheng, PbSe quantum-dot-doped broadband fiber amplifier based on sodium-aluminum-borosilicate-silicate glass. Opt. Laser Technol. 122, 105812 (2020)

    Article  CAS  Google Scholar 

  16. W. Hou, H. Zhao, N. Li, Y. Xue, J. Shi, X. Xu, J. Xu, Spectroscopic properties of Er:Lu2O3 crystal in mid-infrared emission. Opt. Mater. 98, 109508 (2019)

    Article  CAS  Google Scholar 

  17. K. Kirdsiri, J. Kaewkhao, Theoretical investigation on radiation properties of calcium-silico-borate glasses doped with varying Lu2O3 concentration. Key Eng. Mater. 675, 447–451 (2016)

    Article  Google Scholar 

  18. M.A. Madshal, G. El-Damrawi, A.M. Abdelghany, M.I. Abdelghany, Structural studies and physical properties of Gd2O3-doped borate glass. J. Mater. Sci. Mater. Electron. 32(11), 14642–14653 (2021)

    Article  CAS  Google Scholar 

  19. J.J. Velázquez, R. Balda, J. Fernández, G. Gorni, G.C. Mather, L. Pascual, A. Durán, M.J. Pascual, Transparent glass-ceramics of sodium lutetium fluoride co-doped with erbium and ytterbium. J. Non-Cryst. Solids 501, 136–144 (2018)

    Article  ADS  Google Scholar 

  20. A. Saleh, Comparative shielding features for X/Gamma-rays, fast and thermal neutrons of some gadolinium silicoborate glasses. Prog. Nucl. Energy 154, 104482 (2022)

    Article  CAS  Google Scholar 

  21. M.M. Salem, E.-R. Kenawy, H.M.H. Zakaly, A. Ene, M.M. Azaam, T.B. Edries, D. Zhou, M.M. Hussein, A.S. Abd El-Hameed, I.M. Nabil, M.A. Darwish, Electrospun PVDF/barium hexaferrite fiber composites for enhanced electromagnetic shielding in the X-band range. Results Phys. 53, 106975 (2023)

    Article  Google Scholar 

  22. R. Kurtulus, T. Kavas, E. Kavaz, G.A.L. Misned, H. Tekin, Synthesis, optical, structural, physical, and experimental gamma-ray transmission properties of high-density lead-boro-tellurite glasses: a multi-phases investigation towards providing a behavioral symmetry through Lead(II) oxide. Ceramics Int. 49, 23189–23196 (2023)

    Article  CAS  Google Scholar 

  23. A. Saleh, H. Almohiy, R.M. Shalaby, M. Saad, Comprehensive investigation on physical, structural, mechanical and nuclear shielding features against X/gamma-rays, neutron, proton and alpha particles of various binary alloys. Radiat. Phys. Chem. 216, 111443 (2023)

    Article  Google Scholar 

  24. A. El-Taher, H.M. Zakaly, R. El-Sharkawy, E.A. Allam, M. Al Meshari, M.E. Mahmoud, Effect of bismuth oxide nanoparticles on the radiation shielding of bentonite clay using Fluka modeling calculations and simulation studying. Prog. Nucl. Energy 155, 104494 (2023)

    Article  CAS  Google Scholar 

  25. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  26. I.G. Geidam, K.A. Matori, M.K. Halimah, K.T. Chan, F.D. Muhammad, M. Ishak, S.A. Umar, A.M. Hamza, Optical characterization and polaron radius of Bi2O3 doped silica borotellurite glasses. J. Lumin. 246, 118868 (2022)

    Article  CAS  Google Scholar 

  27. W.L. Konijnendijk, J.M. Stevels, The structure of borosilicate glasses studied by Raman scattering. J. Non-Cryst. Solids 20, 193–224 (1976)

    Article  ADS  CAS  Google Scholar 

  28. B. Cochain, D.R. Neuville, G.S. Henderson, C.A. McCammon, O. Pinet, P. Richet, Effects of the iron content and redox state on the structure of sodium borosilicate glasses: a Raman, Mössbauer and boron K-edge XANES spectroscopy study. J. Am. Ceram. Soc. 95, 962–971 (2012)

    Article  CAS  Google Scholar 

  29. L. Zhou, H. Lin, W. Chen, L. Luo, IR and Raman investigation on the structure of (100–x)B2O3-x[0.5 BaO–0.5 ZnO] glasses. J. Phys. Chem. Solids 69, 2499–2502 (2008)

    Article  ADS  CAS  Google Scholar 

  30. H. Yamashita, K. Nagata, H. Yoshino, K. Ono, T. Maekawa, Structural studies of 30Na2O–5SiO2–65[(1–x)P2O5–xB2O3] glasses by nuclear magnetic resonance, Raman and infrared spectroscopy. J. Non-Cryst. Solids 248, 115–126 (1999)

    Article  ADS  CAS  Google Scholar 

  31. A.M. Abdelghany, Y.S. Rammah, Transparent alumino lithium borate glass-ceramics: synthesis, structure and gamma-ray shielding attitude. J. Inorg. Organomet. Polym Mater. 31, 2560–2568 (2021)

    Article  CAS  Google Scholar 

  32. Y. Al-Hadeethi, M.I. Sayyed, B.M. Raffah, E. Bekyarova, Y.S. Rammah, Optical properties and radiation shielding features of Er3+ ions doped B2O3–SiO2–Gd2O3–CaO glasses. Ceramics Int. 47, 3421–3429 (2021)

    Article  CAS  Google Scholar 

  33. A.S. Abouhaswa, G.M. Turky, Y.S. Rammah, Characterization of zinc lead-borate glasses doped with Fe3+: optical, dielectric and ac-conductivity investigations. J. Mater. Sci. Mater Electron 31, 17044–17054 (2020)

    Article  CAS  Google Scholar 

  34. H.O. Tekin, S.A.M. Issa, E.M. Ahmed, Y.S. Rammah, Lithium-fluoro borotellurite glasses: nonlinear optical, mechanical, characteristics and gamma radiation protection characteristics. Radiat. Phys. Chem. 190, 109819 (2022)

    Article  CAS  Google Scholar 

  35. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)

    Article  CAS  Google Scholar 

Download references

Funding

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R60), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

NAMA, NA, HA, AMAE, AMA, YSR, ASA: Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing-Review and Editing, Visualization, Supervision.

Corresponding author

Correspondence to Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaif, N.A.M., Alfryyan, N., Al-Ghamdi, H. et al. Raman Spectroscopy, Physical Parameters and γ-Ray Shielding Competence of Newly Lu3+ Ions Doped Borosilicate Glasses. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03054-y

Keywords

Navigation