Log in

Preparation and Application of Nitrobenzene-Containing Copolymer Nanoparticles Obtained by RAFT Dispersion Polymerization

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, the photoresponsive monomer of 2-nitrobenzyl methacrylate (NBMA) was introduced into the dispersion polymerization of benzyl methacrylate (BzMA) monomer mediated by poly[N,N-(dimethylamino) ethyl methacrylate] (PDMAEMA) macro-RAFT agent, and the PDMAEMA-b-P(BzMA-co-NBMA) block copolymer nanoparticles were prepared. The effects of the introduction of NBMA on the polymerization kinetics and the morphology of formed copolymer nanoassemblies were studied in detail. Then, the light response of PDMAEMA-b-P(BzMA-co-NBMA) block copolymer nanoparticles was verified. Moreover, the copolymer nanoparticles after irradiation could be used as the templates for loading silver nanoparticles, and it is proved that the template has advantage of regulating the amount of loaded silver by changing the UV light irradiation time.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. W.J. Zhang, C.Y. Hong, C.Y. Pan, Polymerization-induced self-assembly of functionalized block copolymer nanoparticles and their application in drug delivery. Macromol. Rapid Commun. 40, 1800279 (2019)

    Article  Google Scholar 

  2. F. Cuétara-Guadarrama, M. Vonlanthen, K. Sorroza-Martínez, I. González-Méndez, E. Rivera, Photoisomerizable azobenzene dyes incorporated into polymers and dendrimers. Influence of the molecular aggregation on the nonlinear optical properties. Dyes Pigm. 194, 109551 (2021)

    Article  Google Scholar 

  3. J. Cao, Y. Tan, Y. Chen, L. Zhang, J. Tan, How the reactive end group of macro-RAFT agent affects RAFT-mediated emulsion polymerization-induced self-assembly. Macromol. Rapid Commun. 42, 2100333 (2021)

    Article  CAS  Google Scholar 

  4. Q. Xu, Y. Zhang, X. Li, J. He, J. Tan, L. Zhang, Enzyme catalysis-induced RAFT polymerization in water for the preparation of epoxy-functionalized triblock copolymer vesicles. Polym. Chem. 9, 4908–4916 (2018)

    Article  CAS  Google Scholar 

  5. J. He, J. Cao, Y. Chen, L. Zhang, J. Tan, Thermoresponsive block copolymer vesicles by visible light-initiated seeded polymerization-induced self-assembly for temperature-regulated enzymatic nanoreactors. ACS Macro Lett. 9, 533–539 (2020)

    Article  CAS  PubMed  Google Scholar 

  6. F. Xu, J. Zhang, P. Zhang, X. Luan, Y. Mai, “Rod–coil” copolymers get self-assembled in solution. Mater. Chem. Front. 3, 2283–2307 (2019)

    Article  CAS  Google Scholar 

  7. Z. Liu, C. Wu, Y. Fu, X. Xu, J. Ying, J. Sheng, Y. Huang, C. Ma, T. Chen, Synthesis of Janus Au@BCP nanoparticles via UV light-initiated RAFT polymerization-induced self-assembly. Nanoscale Adv. 3, 347–352 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. S.R. Mane, Trending methods employed for polymerization induced self-assembly. New J. Chem. 44, 6690–6698 (2020)

    Article  CAS  Google Scholar 

  9. J. Yeow, C. Boyer, Photoinitiated polymerization-induced self-assembly (photo-PISA): new insights and opportunities. Adv. Sci. 4, 1700137 (2017)

    Article  Google Scholar 

  10. B. Shi, H. Zhang, Y. Liu, J. Wang, P. Zhou, M. Cao, G. Wang, Development of ICAR ATRP-based polymerization-induced self-assembly and its application in the preparation of organic-inorganic nanoparticles. Macromol. Rapid Commun. 40, 1900547 (2019)

    Article  CAS  Google Scholar 

  11. C. Liu, C.-Y. Hong, C.-Y. Pan, Polymerization techniques in polymerization-induced self-assembly (PISA). Polym. Chem. 11, 3673–3689 (2020)

    Article  CAS  Google Scholar 

  12. F. D’Agosto, J. Rieger, M. Lansalot, RAFT-mediated polymerization-induced self-assembly. Angew. Chem. Int. Ed. 59, 8368–8392 (2020)

    Article  Google Scholar 

  13. J. Wang, Z. Wu, G. Wang, K. Matyjaszewski, In situ crosslinking of nanoparticles in polymerization-induced self-assembly via ARGET ATRP of glycidyl methacrylate. Macromol. Rapid Commun. 40, 1800332 (2019)

    Article  Google Scholar 

  14. F. Lv, Z. An, P. Wu, What determines the formation of block copolymer nanotubes? Macromolecules 53, 367–373 (2019)

    Article  Google Scholar 

  15. E.E. Brotherton, F.L. Hatton, A.A. Cockram, M.J. Derry, A. Czajka, E.J. Cornel, P.D. Topham, O.O. Mykhaylyk, S.P. Armes, In situ small-angle X-ray scattering studies during reversible addition-fragmentation chain transfer aqueous emulsion polymerization. J. Am. Chem. Soc. 141, 13664–13675 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Y. Du, S. Jia, Y. Chen, L. Zhang, J. Tan, Type I photoinitiator-functionalized block copolymer nanoparticles prepared by RAFT-mediated polymerization-induced self-assembly. ACS Macro Lett. 10, 297–306 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. X. Wang, Z. An, New insights into RAFT dispersion polymerization-induced self-assembly: from monomer library, morphological control, and stability to driving forces. Macromol. Rapid Commun. 40, 1800325 (2019)

    Article  Google Scholar 

  18. M. Yu, J. Tan, J. Yang, Z. Zeng, Z-type and R-type macro-RAFT agents in RAFT dispersion polymerization—another mechanism perspective on PISA. Polym. Chem. 7, 3756–3765 (2016)

    Article  CAS  Google Scholar 

  19. S. Pearce, J. Perez-Mercader, PISA: construction of self-organized and self-assembled functional vesicular structures. Polym. Chem. 12, 29–49 (2021)

    Article  CAS  Google Scholar 

  20. X. Luo, A morphological transition of poly(ethylene glycol)-block-polystyrene with polymerization-induced self-assembly guided by using cosolvents. Eur. Polym. J. 158, 110639 (2021)

    Article  CAS  Google Scholar 

  21. M. Huo, Z. Xu, M. Zeng, P. Chen, L. Liu, L.-T. Yan, Y. Wei, J. Yuan, Controlling vesicular size via topological engineering of amphiphilic polymer in polymerization-induced self-assembly. Macromolecules 50, 9750–9759 (2017)

    Article  CAS  Google Scholar 

  22. Y. Zhang, M. Cao, G. Han, T. Guo, T. Ying, W. Zhang, Topology affecting block copolymer nanoassemblies: linear block copolymers versus star block copolymers under PISA conditions. Macromolecules 51, 5440–5449 (2018)

    Article  CAS  Google Scholar 

  23. J. Lesage de la Haye, X. Zhang, I. Chaduc, F. Brunel, M. Lansalot, F. D’Agosto, The effect of hydrophile topology in RAFT-mediated polymerization-induced self-assembly. Angew. Chem. Int. Ed. 55, 3739–43 (2016)

    Article  CAS  Google Scholar 

  24. X. Wang, C.A. Figg, X. Lv, Y. Yang, B.S. Sumerlin, Z. An, Star architecture promoting morphological transitions during polymerization-induced self-assembly. ACS Macro Lett. 6, 337–342 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. Y. Zhang, G. Han, M. Cao, T. Guo, W. Zhang, Influence of solvophilic homopolymers on RAFT polymerization-induced self-assembly. Macromolecules 51, 4397–4406 (2018)

    Article  CAS  Google Scholar 

  26. Y. Zhang, P. Wang, N. Li, C. Guo, S. Li, The effect of topology on block copolymer nanoparticles: linear versus star block copolymers in toluene. Polymers 14, 3691 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Q. Yu, Y. Ding, H. Cao, X. Lu, Y. Cai, Use of polyion complexation for polymerization-induced self-assembly in water under visible light irradiation at 25 °C. ACS Macro Lett. 4, 1293–1296 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. X. Chen, L. Liu, M. Huo, M. Zeng, L. Peng, A. Feng, X. Wang, J. Yuan, Direct synthesis of polymer nanotubes by aqueous dispersion polymerization of a cyclodextrin/styrene complex. Angew. Chem. Int. Ed. 56, 16541–16545 (2017)

    Article  CAS  Google Scholar 

  29. L. Shen, Y. Li, Q. Lu, X. Qi, X. Wu, J. Shen, Facile preparation of one-dimensional nanostructures through polymerization-induced self-assembly mediated by host–guest interaction. Polym. Chem. 11, 4208–4212 (2020)

    Article  CAS  Google Scholar 

  30. J. Du, S.P. Armes, pH-responsive vesicles based on a hydrolytically self-cross-linkable copolymer. J. Am. Chem. Soc. 127, 12800–12801 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. K.E.B. Doncom, C.F. Hansell, P. Theato, R.K. O’Reilly, pH-switchable polymer nanostructures for controlled release. Polym. Chem. 3, 3007–3015 (2012)

    Article  CAS  Google Scholar 

  32. E. Blasco, J.L. Serrano, M. Piñol, L. Oriol, Light responsive vesicles based on linear–dendritic block copolymers using azobenzene-aliphatic codendrons. Macromolecules 46, 5951–5960 (2013)

    Article  CAS  Google Scholar 

  33. F.D. Jochumab, P. Theato, Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 42, 7468–7483 (2013)

    Article  Google Scholar 

  34. J. He, P. Zhang, T. Babu, Y. Liu, J. Gong, Z. Nie, Near-infrared light-responsive vesicles of Au nanoflowers. Chem. Commun. 49, 576–578 (2013)

    Article  CAS  Google Scholar 

  35. H. Xu, F. Meng, Z. Zhong, Reversibly crosslinked temperature-responsive nano-sized polymersomes: synthesis and triggered drug release. J. Mater. Chem. 19, 4183–4190 (2009)

    Article  CAS  Google Scholar 

  36. R. Cheng, F. Meng, C. Deng, H.A. Klok, Z. Zhong, Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34, 3647–3657 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. I. Martin-Fabiani, A. Fortini, J. Lesage de la Haye, M.L. Koh, S.E. Taylor, E. Bourgeat-Lami, M. Lansalot, F. D’Agosto, R.P. Sear, J.L. Keddie, pH-switchable stratification of colloidal coatings: surfaces “on demand.” ACS Appl. Mater. Interfaces 8, 34755–34761 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. B. Fan, J. Wan, J. Zhai, X. Chen, S.H. Thang, Triggered degradable colloidal particles with ordered inverse bicontinuous cubic and hexagonal mesophases. ACS Nano 15, 4688–4698 (2021)

    Article  CAS  PubMed  Google Scholar 

  39. H. Phan, V. Taresco, J. Penelle, B. Couturaud, Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: recent advances. Biomater. Sci. 9, 38–50 (2021)

    Article  CAS  PubMed  Google Scholar 

  40. Y. Pei, A.B. Lowe, P.J. Roth, Stimulus-responsive nanoparticles and associated (reversible) polymorphism via polymerization induced self-assembly (PISA). Macromol. Rapid Commun. 38, 1600528 (2017)

    Article  Google Scholar 

  41. A. Bagheri, C. Boyer, M. Lim, Synthesis of light-responsive pyrene-based polymer nanoparticles via polymerization-induced self-assembly. Macromol. Rapid Commun. 40, 1800510 (2019)

    Article  Google Scholar 

  42. N.J.W. Penfold, J.R. Lovett, P. Verstraete, J. Smets, S.P. Armes, Stimulus-responsive non-ionic diblock copolymers: protonation of a tertiary amine end-group induces vesicle-to-worm or vesicle-to-sphere transitions. Polym. Chem. 8, 272–282 (2017)

    Article  CAS  Google Scholar 

  43. W. Du, X. Liu, L. Liu, J.W.Y. Lam, B.Z. Tang, Photoresponsive polymers with aggregation-induced emission. ACS Appl. Polym. Mater. 3, 2290–2309 (2021)

    Article  CAS  Google Scholar 

  44. C.A. Boyer, G.M. Miyake, Polymers and light. Macromol. Rapid Commun. 38, 1700327 (2017)

    Article  Google Scholar 

  45. F.D. Jochum, L.Z. Borg, P.J. Roth, P. Theato, Thermo- and light-responsive polymers containing photoswitchable azobenzene end groups. Macromolecules 42, 7854–7862 (2009)

    Article  CAS  Google Scholar 

  46. O. Bertrand, J.-F. Gohy, Photo-responsive polymers: synthesis and applications. Polym. Chem. 8, 52–73 (2017)

    Article  CAS  Google Scholar 

  47. W. Shen, J. Zheng, Z. Zhou, D. Zhang, Approaches for the synthesis of o-nitrobenzyl and coumarin linkers for use in photocleavable biomaterials and bioconjugates and their biomedical applications. Acta Biomater. 115, 75–91 (2020)

    Article  CAS  PubMed  Google Scholar 

  48. Y.W. Chiang, J.J. Chang, C.Y. Chou, C.S. Wu, E.L. Lin, E.L. Thomas, Stimulus-responsive thin-film photonic crystals from rapid self-assembly of block copolymers for photopatterning. Adv. Opt. Mater. 3, 1517–1523 (2015)

    Article  CAS  Google Scholar 

  49. Y. Arisaka, N. Yui, Suspending polyrotaxane dissociation via photo-reversible cap** of terminals. Macromol. Rapid Commun. 40, 1900323 (2019)

    Article  CAS  Google Scholar 

  50. L. Li, J.M. Scheiger, P.A. Levkin, Design and applications of photoresponsive hydrogels. Adv. Mater. 31, 1807333 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  51. H. Qi, B. Bai, H. Wang, M. Zhang, Y. Chen, J. Wei, M. Li, H. **n, Stimuli-responsive behavior of naphthyl acylhydrazone derivative and its application in information security protection. Spectrochim. Acta A 242, 118768 (2020)

    Article  CAS  Google Scholar 

  52. Y. Liu, X. Huang, Z. Niu, D. Wang, H. Gou, Q. Liao, K. **, Z. An, X. Jia, Photo-induced ultralong phosphorescence of carbon dots for thermally sensitive dynamic patterning. Chem. Sci. 12, 8199–8206 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. C. Zhao, S. Shuai, S. Zhou, Y. Liu, W. Huo, H. Zhu, Z. Rao, Y. Li, K. Zhou, W. Ge, J. Hao, Synthesis and characterization of photo-responsive flower-like copolymer micelles with o-nitrobenzyl as the junction point. Mater. Lett. 261, 127151 (2020)

    Article  CAS  Google Scholar 

  54. Z. Tajmoradi, H. Roghani-Mamaqani, M. Salami-Kalajahi, Cellulose nanocrystal-grafted multi-responsive copolymers containing cleavable o-nitrobenzyl ester units for stimuli-stabilization of oil-in-water droplets. Chem. Eng. J. 417, 128005 (2021)

    Article  CAS  Google Scholar 

  55. W. Hou, R. Liu, S. Bi, Q. He, H. Wang, J. Gu, Photo-responsive polymersomes as drug delivery system for potential medical applications. Molecules 25, 5147 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  56. M. Tan, Y. Shi, Z. Fu, W. Yang, In situ synthesis of diblock copolymer nano-assemblies via dispersion RAFT polymerization induced self-assembly and Ag/copolymer composite nanoparticles thereof. Polym. Chem. 9, 1082–1094 (2018)

    Article  CAS  Google Scholar 

  57. E. Chaabouni, V. Tkachenko, L. Vidal, N. Allouche, A. Chemtob, Fully photodegradable block copolymer nanoparticles for dual release of cargo and radicals. Eur. Polym. J. 156, 110633 (2021)

    Article  CAS  Google Scholar 

  58. W.-J. Zhang, C.-Y. Hong, C.-Y. Pan, Efficient fabrication of photosensitive polymeric nano-objects via an ingenious formulation of RAFT dispersion polymerization and their application for drug delivery. Biomacromolecules 18, 1210–1217 (2017)

    Article  CAS  PubMed  Google Scholar 

  59. P. Wang, N. Li, S. Li, Y. Zhang, Strategies for preparing hybrid nanomaterials via polymerization-induced self-assembly. Eur. Polym. J. 172, 111234 (2022)

    Article  CAS  Google Scholar 

  60. Ö.A. Kalaycı, F.B. Cömert, B. Hazer, T. Atalay, K.A. Cavicchi, M. Cakmak, Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic comb-type graft copolymers. Polym. Bull. 65, 215–226 (2010)

    Article  Google Scholar 

  61. B. Hazer, Ö.A. Kalaycı, High fluorescence emission silver nano particles coated with poly(styrene-g-soybean oil) graft copolymers: antibacterial activity and polymerization kinetics. Mater. Sci. Eng. C 74, 259–269 (2017)

    Article  CAS  Google Scholar 

  62. Ç. Erdem, T. Isık, N. Horzum, B. Hazer, M.M. Demir, Electrospinning of fatty acid-based and metal incorporated polymers for the fabrication of eco-friendly fibers. Macromol. Chem. Phys. 223, 2100438 (2022)

    Article  CAS  Google Scholar 

  63. H. Wu, J. Dong, X. Zhan, H. Yang, Y. Zhao, S. Zhu, G. Wang, Triple stimuli-responsive crosslinked polymeric nanoparticles for controlled release. RSC Adv. 4, 35757–35761 (2014)

    Article  CAS  Google Scholar 

  64. G. Moad, Y.K. Chong, A. Postma, E. Rizzardo, S.H. Thang, Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer 46, 8458–8468 (2005)

    Article  CAS  Google Scholar 

  65. A. Pourjavadi, S. Rahemipoor, M. Kohestanian, Synthesis and characterization of multi stimuli-responsive block copolymer-silica hybrid nanocomposite with core-shell structure via RAFT polymerization. Compos. Sci. Technol. 188, 107951 (2020)

    Article  CAS  Google Scholar 

  66. Y. Su, M. Dan, X. **ao, X. Wang, W. Zhang, A new thermo-responsive block copolymer with tunable upper critical solution temperature and lower critical solution temperature in the alcohol/water mixture. J. Polym. Sci. A 51, 4399–4412 (2013)

    Article  CAS  Google Scholar 

  67. Y. Qu, F. Huo, Q. Li, X. He, S. Li, W. Zhang, In situ synthesis of thermo-responsive ABC triblock terpolymer nano-objects by seeded RAFT polymerization. Polym. Chem. 5, 5569–5577 (2014)

    Article  CAS  Google Scholar 

  68. J.M. Schumers, C.A. Fustin, A. Can, R. Hoogenboom, U.S. Schubert, J.F. Gohy, Are o-nitrobenzyl (meth)acrylate monomers polymerizable by controlled-radical polymerization? J. Polym. Sci. A 47, 6504–6513 (2009)

    Article  CAS  Google Scholar 

  69. Y. Zhang, P. Wang, N. Li, C. Guo, Y. Liu, S. Li, RAFT dispersion polymerization of nitrobenzene-based monomer and photo-response of its polymer nanoparticles. J. Inorg. Organomet. Polym. 33, 2368–2377 (2023)

    Article  CAS  Google Scholar 

  70. A. Hanisch, P. Yang, A.N. Kulak, L.A. Fielding, F.C. Meldrum, S.P. Armes, Phosphonic acid-functionalized diblock copolymer nano-objects via polymerization-induced self-assembly: synthesis, characterization, and occlusion into calcite crystals. Macromolecules 49, 192–204 (2016)

    Article  CAS  Google Scholar 

  71. S.M. North, S.P. Armes, Aqueous one-pot synthesis of well-defined zwitterionic diblock copolymers by RAFT polymerization: an efficient and environmentally-friendly route to a useful dispersant for aqueous pigments. Green Chem. 23, 1248–1258 (2021)

    Article  CAS  Google Scholar 

  72. X. Wang, G. Liu, J. Hu, G. Zhang, S. Liu, Concurrent block copolymer polymersome stabilization and bilayer permeabilization by stimuli-regulated “traceless” crosslinking. Angew. Chem. Int. Ed. 53, 3138–3142 (2014)

    Article  CAS  Google Scholar 

  73. A.B. Andrew, A. Omar, T.S.H. Wilhelm, Photoresponsive polymer brushes for hydrophilic patterning. Langmuir 25, 1744–1749 (2009)

    Article  Google Scholar 

  74. F. Huo, S. Li, X. He, S.A. Shah, Q. Li, W. Zhang, Disassembly of block copolymer vesicles into nanospheres through vesicle mediated RAFT polymerization. Macromolecules 47, 8262–8269 (2014)

    Article  CAS  Google Scholar 

  75. X. Huang, Y. **ao, W. Zhang, M. Lang, In-situ formation of silver nanoparticles stabilized by amphiphilic star-shaped copolymer and their catalytic application. Appl. Surf. Sci. 258, 2655–2660 (2012)

    Article  CAS  Google Scholar 

  76. W. Zhou, Q. Qu, W. Yu, Z. An, Single monomer for multiple tasks: polymerization induced self-assembly, functionalization and cross-linking, and nanoparticle loading. ACS Macro Lett. 3, 1220–1224 (2014)

    Article  CAS  PubMed  Google Scholar 

  77. R. Bleach, B. Karagoz, S.M. Prakash, T.P. Davis, C. Boyer, In situ formation of polymer–gold composite nanoparticles with tunable morphologies. ACS Macro Lett. 3, 591–596 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22201109).

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 22201109).

Author information

Authors and Affiliations

Authors

Contributions

Xuemei Liu, Peng Wang conducted most of the experiments and wrote the manuscript. Xuemei Liu and Mengting Wan conducted some of the experiments. Songjun Li was responsible for modifying the paper. Yuan Zhang conducted some of the experiments and performed conceptualization, supervision, reviewing and editing of the paper and provided the funding support.

Corresponding author

Correspondence to Yuan Zhang.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1714 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, P., Wan, M. et al. Preparation and Application of Nitrobenzene-Containing Copolymer Nanoparticles Obtained by RAFT Dispersion Polymerization. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03041-3

Keywords

Navigation