Log in

Synthesis and Boosting the Structural and Optical Characteristics of PMMA/SiC/CdS Hybrid Nanomaterials for Future Optical and Nanoelectronics Applications

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The present work goals to fabricate of silicon carbide (SiC)/cadmium sulphide (CdS) nanostructures loaded poly-methyl methacrylate (PMMA) as future nanocomposite to apply in various promising optical and nanoelectronics applications. The structural and optical properties of PMMA/SiC/CdS nanostructures were tested. The obtained results showed that the absorbance of PMMA increased of 23.2% at λ = 240 nm, λ = 32.1% at λ = 540 nm and 34.7% at λ = 840 nm while the transmittance reduced with increasing of the SiC/CdS NPs content of 5.7 wt%. The indirect energy gap of PMMA reduced from 3.95 to 3.48 eV for allowed transition and from 3.82 to 3.2 eV when the SiC/CdS NPs content reached of 5.7 wt%, and these results make them are useful for optical and nanoelectronics fields. The other optical parameters of PMMA enhanced with rising the SiC/CdS NPs content. Finally, the results confirmed that the PMMA/SiC/CdS nanostructures can be considered as future nanocomposite to utilize in different promising optical and nanoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Yes, the data are available.

References

  1. R.M. Abdullah, S.B. Aziz, S.M. Mamand, A.Q. Hassan, S.A. Hussein, M.F.Z. Kadir, Reducing the crystallite size of spherulites in PEO-based polymer nanocomposites mediated by carbon nanodots and Ag nanoparticles. Nanomaterials 9, 874 (2019). https://doi.org/10.3390/nano9060874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. F. Yousefi, S.B. Mousavi, S.Z. Heris, S. Naghash-Hamed, UV-shielding properties of a cost-effective hybrid PMMA-based thin film coatings using TiO2 and ZnO nanoparticles: a comprehensive evaluation. Sci. Rep. 13, 7116 (2023). https://doi.org/10.1038/s41598-023-34120-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. A.B.G. Trabelsi, A.M. Mostafa, F.H. Alkallas, W.B. Elsharkawy, A.N. Al-Ahmadi, H.A. Ahmed, S.S. Nafee, R.A. Pashameah, E.A. Mwafy, Effect of CuO nanoparticles on the optical, structural, and electrical properties in the PMMA/PVDF nanocomposite. Micromachines 14, 1195 (2023). https://doi.org/10.3390/mi14061195

    Article  PubMed  PubMed Central  Google Scholar 

  4. W. Ismail, G. Ibrahim, M.A. Habib, O.K. Alduaij, M. Abdelfatah, A. El-Shaer, Advancement of physical and photoelectrochemical properties of nanostructured CdS thin films toward optoelectronic applications. Nanomaterials 13, 1764 (2023). https://doi.org/10.3390/nano13111764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Balestrat, M. Cheype, P. Carles, X. Deschanels, A. Soum-Glaude, C. Gervais, F. Rossignol, N. Pradeilles, S. Bernard, Optically selective SiC-based nanocomposite objects derived from titanium and boron-modified polycarbosilanes. Open Ceram. 14, 100353 (2023). https://doi.org/10.1016/j.oceram.2023.100353

    Article  CAS  Google Scholar 

  6. N.A.H. Al-Aaraji, A. Hashim, H.M. Abduljalil et al., Tailoring the design, structure and spectroscopic characteristics of SiC/CuO doped transparent polymer for photonics and quantum nanoelectronics fields. Opt. Quant. Electron. 55, 743 (2023). https://doi.org/10.1007/s11082-023-05048-5

    Article  CAS  Google Scholar 

  7. A. Hashim, A. Hadi, M.H. Abbas, Fabrication and unraveling the morphological, optical and electrical features of PVA/SnO2/SiC nanosystem for optics and nanoelectronics applications. Opt. Quant. Electron. 55, 642 (2023). https://doi.org/10.1007/s11082-023-04929-z

    Article  CAS  Google Scholar 

  8. A. Hashim, A. Hadi, N.A.H. Al-Aaraji et al., Fabrication and augmented structural, optical and electrical features of PVA/Fe2O3/SiC hybrid nanosystem for optics and nanoelectronics fields. SILICON (2023). https://doi.org/10.1007/s12633-023-02471-x

    Article  Google Scholar 

  9. H. Ahmed, A. Hashim, Tuning the spectroscopic and electronic characteristics of ZnS/SiC nanostructures doped organic material for optical and nanoelectronics fields. SILICON 15, 2339–2348 (2023). https://doi.org/10.1007/s12633-022-02173-w

    Article  CAS  Google Scholar 

  10. N.A.H. Al-Aaraji, A. Hashim, A. Hadi et al., Synthesis and enhanced optical characteristics of silicon carbide/copper oxide nanostructures doped transparent polymer for optics and photonics nanodevices. SILICON 14, 10037–10044 (2022). https://doi.org/10.1007/s12633-022-01730-7

    Article  CAS  Google Scholar 

  11. S.S. Kong, W.K. Liu, X.X. Yu et al., Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs. Front. Phys. 18, 43302 (2023). https://doi.org/10.1007/s11467-023-1263-9

    Article  ADS  Google Scholar 

  12. M.A. Awad, M. Shaban, M. Rabia, The efficiency of M (M = Li, Na, or Cs) doped CdS nanomaterials in optoelectronic applications. Int. J. Energy Res. 46(6), 8443–8451 (2022). https://doi.org/10.1002/er.7640

    Article  CAS  Google Scholar 

  13. L. Kumari, A.K. Kar, Role of PVA cap** on photophysical properties of chemically prepared CdS nanomaterials: insights on energy transfer mechanisms in the capped system. Mater. Lett. 302, 130398 (2021)

    Article  CAS  Google Scholar 

  14. K. Pal, S. Thomas, M.L. Mohan, N. Madhu, Evaluation of versatile CdS nanomaterials based liquid crystals switchable device. J. Nanosci. Nanotechnol. 17(4), 2401–2412 (2017). https://doi.org/10.1166/jnn.2017.13457

    Article  CAS  PubMed  Google Scholar 

  15. F.L. Rashid, S.M. Talib, A. Hadi, A. Hashim, Novel of thermal energy storage and release: water/(SnO2-TaC) and water/(SnO2 –SiC) nanofluids for environmental applications. IOP Conf. Ser. Mater. Sci. Eng. 454, 012113 (2018). https://doi.org/10.1088/1757-899X/454/1/012113

    Article  Google Scholar 

  16. A.S. Shareef, F.L. Rashid, A. Hadi, A. Hashim, Water-polyethylene glycol/(SiC-WC) and (CeO2-WC) nanofluids for saving solar energy. Int. J. Sci. Technol. Res. 8(11), 1–10 (2019)

    Google Scholar 

  17. A. Hadi, F.L. Rashid, H.Q. Hussein, A. Hashim, Novel of water with (CeO2-WC) and (SiC-WC) nanoparticles systems for energy storage and release applications. IOP Conf. Ser. Mater. Sci. Eng. 518(3), 5 (2019). https://doi.org/10.1088/1757-899X/518/3/032059

    Article  Google Scholar 

  18. A.A.A. Ahmed, A.M. Al-Hussam, A.M. Abdulwahab, A.N.A. Ali Ahmed, The impact of sodium chloride as dopant on optical and electrical properties of polyvinyl alcohol. AIMS Mater. Sci. (2018). https://doi.org/10.3934/matersci.2018.3.533

    Article  Google Scholar 

  19. A.M.A. Henaish, A.S. Abouhaswa, Effect ofWO3 nanoparticle do** on the physical properties of PVC polymer. Bull. Mater. Sci. (2020). https://doi.org/10.1007/s12034-020-2109-5

    Article  Google Scholar 

  20. S. Agarwal, Y.K. Saraswat, V.K. Saraswat, Study of optical constants of ZnO dispersed PC/PMMA blend nanocomposites. Open Phys. J. 3, 63–72 (2016). https://doi.org/10.2174/1874843001603010063

    Article  ADS  Google Scholar 

  21. N. Mahfoudh, K. Karoui, A. Ben Rhaiem, Optical studies and dielectric response of [DMA]2MCl4 (M ¼ Zn and Co) and [DMA]2ZnBr 4. RSC Adv. (2021). https://doi.org/10.1039/d1ra03652a

    Article  PubMed  PubMed Central  Google Scholar 

  22. A. Alsaad, A.R. Al Dairy, A. Ahmad, I.A. Qattan, S. Al Fawares, Q. Al-Bataineh, Synthesis and characterization of polymeric (PMMA-PVA) hybrid thin films doped with TiO2 nanoparticles using dip-coating technique. Crystals (2021). https://doi.org/10.3390/cryst11020099

    Article  Google Scholar 

  23. A.O. Salohub, A.A. Voznyi, O.V. Klymov, N.V. Safryuk, D.I. Kurbatov, A.S. Opanasyuk, Determination of fundamental optical constants of Zn2SnO4 films, semiconductor physics. Quant. Elect. Optoelec. 20, 79 (2017). https://doi.org/10.15407/spqeo20.01.079

    Article  CAS  Google Scholar 

  24. G. Ahmed, A. Hashim, Synthesis of PMMA/PEG/Si3N4 nanostructures and exploring the structural and dielectric characteristics for flexible nanoelectronics applications. SILICON 15, 3977–3985 (2023). https://doi.org/10.1007/s12633-023-02322-9

    Article  CAS  Google Scholar 

  25. S.B. Balakrishnan, M. Alam, N. Ahmad, M. Govindasamy, S. Kuppu, S. Thambusamy, Electrospinning nanofibrous graft preparation and wound healing studies using ZnO nanoparticles and glucosamine loaded with poly(methyl methacrylate)/polyethylene glycol. New J. Chem. 45(18), 7987–7998 (2021). https://doi.org/10.1039/d0nj05409g

    Article  CAS  Google Scholar 

  26. F.A. Jasim, F. Lafta, A. Hashim, M. Ali, A.G. Hadi, Characterization of palm fronds-polystyrene composites. J. Eng. Appl. Sci. 8(5), 140–142 (2013)

    Google Scholar 

  27. A. Hashim, A. Hadi, Synthesis and characterization of (MgO-Y2O3-CuO) nanocomposites for novel humidity sensor application. Sens. Lett. (2017). https://doi.org/10.1166/sl.2017.3900

    Article  Google Scholar 

  28. F.L. Rashid, A. Hashim, M.A. Habeeb, S.R. Salman, H. Ahmed, Preparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical properties. J. Eng. Appl. Sci. 8(5), 137–139 (2013)

    Google Scholar 

  29. H. Ahmed, A. Hashim, Lightweight, flexible and high energies absorption property of PbO2 doped polymer blend for various renewable approaches. Trans. Electr. Electron. Mater. 22, 335–345 (2021). https://doi.org/10.1007/s42341-020-00244-6

    Article  Google Scholar 

  30. H. Ahmed, A. Hashim, Structural, optical and electronic properties of silicon carbide doped PVA/NiO for low cost electronics applications. SILICON 13, 1509–1518 (2021). https://doi.org/10.1007/s12633-020-00543-w

    Article  CAS  Google Scholar 

  31. H. Ahmed, A. Hashim, Geometry optimization, optical and electronic characteristics of novel PVA/PEO/SiC structure for electronics applications. SILICON 13, 2639–2644 (2021). https://doi.org/10.1007/s12633-020-00620-0

    Article  CAS  Google Scholar 

  32. P.O. Amin, K.A. Ketuly, S.R. Saeed, F.F. Muhammadsharif, M.D. Symes, A. Paul, K. Sulaiman, Synthesis, spectroscopic, electrochemical and photophysical properties of high band gap polymers for potential applications in semi-transparent solar cells. BMC Chem (2021). https://doi.org/10.1186/s13065-021-00751-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. A. Hadi, A. Hashim, Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukr. J. Phys. 62, 1044 (2017). https://doi.org/10.15407/ujpe62.12.1044

    Article  Google Scholar 

  34. H. Ahmed, A. Hashim, Design and characteristics of novel PVA/PEG/Y2O3 structure for optoelectronics devices. J. Mol. Model. 26, 210 (2020). https://doi.org/10.1007/s00894-020-04479-1

    Article  CAS  PubMed  Google Scholar 

  35. A.F. Al-Shawabkeh, Z.M. Elimat, K.N. Abushgair, Effect of non-annealed and annealed ZnO on the optical properties of PVC/ZnO nanocomposite films. J. Thermoplast. Compos. Mater. (2021). https://doi.org/10.1177/08927057211038631

    Article  Google Scholar 

  36. A. Hashim, A. Jassim, Novel of (PVA-ST-PbO2) bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applications. Sens. Lett. (2017). https://doi.org/10.1166/sl.2018.3915

    Article  Google Scholar 

  37. A. Hashim, M.A. Habeeb, A. Hadi, Q.M. Jebur, W. Hadi, Fabrication of novel (PVA-PEG-CMC-Fe3O4) magnetic nanocomposites for piezoelectric applications. Sens. Lett. (2017). https://doi.org/10.1166/sl.2018.3935

    Article  Google Scholar 

  38. A. Hashim, Enhanced morphological, optical and electronic characteristics of WC NPs doped PVP/PEO for flexible and lightweight optoelectronics applications. Opt. Quant Electron. 53, 478 (2021). https://doi.org/10.1007/s11082-021-03100-w

    Article  CAS  Google Scholar 

  39. A. Hashim, A. Jassim, Novel of biodegradable polymers-inorganic nanoparticles: structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications. J. Bionanosci. 12, 170 (2018). https://doi.org/10.1166/jbns.2018.1518

    Article  CAS  Google Scholar 

  40. A. Hashim, Q. Hadi, Novel of (niobium carbide/polymer blend) nanocomposites: fabrication and characterization for pressure sensor. Sens. Lett. (2017). https://doi.org/10.1166/sl.2017.3892

    Article  Google Scholar 

  41. A.M. Alsaad, A.A. Ahmad, I.A. Qattan, A.R. El-Ali, S.A. Al Fawares, Q.M. Al-Bataineh, Synthesis of optically tunable and thermally stable PMMA–PVA/CuO NPs hybrid nanocomposite thin films. Polymers (2021). https://doi.org/10.3390/polym13111715

    Article  PubMed  PubMed Central  Google Scholar 

  42. L.H. Gaabour, Analysis of spectroscopic, optical and magnetic behaviour of PVDF/PMMA blend embedded by magnetite (Fe3O4) nanoparticles. Opt. Photon. J. 10, 197–209 (2020). https://doi.org/10.4236/opj.2020.108021

    Article  ADS  CAS  Google Scholar 

  43. A. Hazim, H.M. Abduljalil, A. Hashim, First principles calculations of electronic, structural and optical properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) nanocomposites for optoelectronics applications. Trans. Electr. Electron. Mater. 22, 185–203 (2021). https://doi.org/10.1007/s42341-020-00224-w

    Article  Google Scholar 

  44. A. Hashim, M.A. Habeeb, A. Khalaf, A. Hadi, Fabrication of (PVA-PAA) blend-extracts of plants bio-composites and studying their structural electrical and optical properties for humidity sensors applications. Sens. Lett. 15, 589–596 (2017). https://doi.org/10.1166/sl.2017.3856

    Article  Google Scholar 

  45. A. Hashim, M.A. Habeeb, Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans. Electr. Electron. Mater. 20, 107–112 (2019). https://doi.org/10.1007/s42341-018-0081-1

    Article  Google Scholar 

  46. Q.M. Jebur, A. Hashim, M.A. Habeeb, Structural, electrical and optical properties for (polyvinyl alcohol-polyethylene oxide–magnesium oxide) nanocomposites for optoelectronics applications. Trans. Electr. Electron. Mater. 20, 334–343 (2019). https://doi.org/10.1007/s42341-019-00121-x

    Article  Google Scholar 

  47. T.S. Soliman, S.A. Vshivkov, Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films. J. Non-Cryst. Solids (2019). https://doi.org/10.1016/j.jnoncrysol.2019.05.028

    Article  Google Scholar 

  48. I.R. Agool, F.S. Mohammed, A. Hashim, The effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA-PAA-PVP) blend. Adv. Environ. Biol. 9(11), 1–10 (2015)

    Google Scholar 

  49. A. Hashim, K.H.H. Al-Attiyah, S.F. Obaid, Fabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shielding. Ukr. J. Phys. 64, 157 (2019). https://doi.org/10.15407/ujpe64.2.157

    Article  Google Scholar 

  50. S. Hadi, A. Hashim, A. Jewad, Optical properties of (PVA-LiF) composites. Aust. J. Basic Appl. Sci. 5(9), 2192–2195 (2011)

    CAS  Google Scholar 

  51. B.H. Rabee, A. Hashim, Synthesis and characterization of carbon nanotubes polystyrene composites. Eur. J. Sci. Res. 60(2), 247–254 (2011)

    Google Scholar 

  52. F.A. Jasim, A. Hashim, A.G. Hadi, F. Lafta, S.R. Salman, H. Ahmed, Preparation of (pomegranate peel-polystyrene) composites and study their optical properties. Res. J. of Appl. Sci. 8(9), 439–441 (2013)

    Google Scholar 

  53. A. Atta, M.M. Abdelhamied, A.M. Abdelreheem, M.R. Berber, Flexible methyl cellulose/polyaniline/silver composite films with enhanced linear and nonlinear optical properties. Polymers (2021). https://doi.org/10.3390/polym13081225

    Article  PubMed  PubMed Central  Google Scholar 

  54. O.B. Fadil, A. Hashim, Fabrication and tailored optical characteristics of CeO2/SiO2 nanostructures doped PMMA for electronics and optics fields. SILICON 14, 9845–9852 (2022). https://doi.org/10.1007/s12633-022-01728-1

    Article  CAS  Google Scholar 

  55. Y.H. Jia, P. Gong, S.L. Li, W.D. Ma, X.Y. Fang, Y.Y. Yang, M.S. Cao, Effects of hydroxyl groups and hydrogen passivation on the structure, electrical and optical properties of silicon carbide nanowires. Phys. Lett. A 384(4), 126106 (2020). https://doi.org/10.1016/j.physleta.2019.126106

    Article  CAS  Google Scholar 

  56. Y.Y. Yang, P. Gong, W.D. Ma, R. Ha, X.Y. Fang, Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes. Chin. Phys. B 30, 067803 (2021)

    Article  ADS  CAS  Google Scholar 

  57. H.M. Gayitri, M.A.G. Siddaramaiah, A.P.G. Prakash, Optical, structural and thermal properties of hybrid PVA/CaAl2ZrO6 nanocomposite films. Indian J. Eng. Mater. Sci. 27, 320–332 (2020)

    CAS  Google Scholar 

  58. A. Hashim, M.H. Abbas, N.A.H. Al-Aaraji et al., Controlling the morphological, optical and dielectric characteristics of PS/SiC/CeO2 nanostructures for nanoelectronics and optics fields. J. Inorg. Organomet. Polym. 33, 1–9 (2023). https://doi.org/10.1007/s10904-022-02485-9

    Article  CAS  Google Scholar 

  59. H.A.J. Hussien, A. Hashim, Synthesis and exploring the structural, electrical and optical characteristics of PVA/TiN/SiO2 hybrid nanosystem for photonics and electronics nanodevices. J. Inorg. Organomet. Polym. 33, 2331–2345 (2023). https://doi.org/10.1007/s10904-023-02688-8

    Article  CAS  Google Scholar 

  60. C. Tyagi, A. Devi, Alteration of structural, optical and electrical properties of CdSe incorporated polyvinyl pyrrolidone nanocomposite for memory devices. J. Adv. Dielectr. (2018). https://doi.org/10.1142/S2010135X18500200

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledgment to University of Babylon.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

AH, SMA, HHA, AH wrote the main manuscript text, prepared figures and reviewed the manuscript.

Corresponding author

Correspondence to Ahmed Hashim.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research Involving Human Participants

The Research is not involving the studies on human or their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, A., Alshrefi, S.M., Abed, H.H. et al. Synthesis and Boosting the Structural and Optical Characteristics of PMMA/SiC/CdS Hybrid Nanomaterials for Future Optical and Nanoelectronics Applications. J Inorg Organomet Polym 34, 703–711 (2024). https://doi.org/10.1007/s10904-023-02866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02866-8

Keywords

Navigation