Log in

Synthesis of Semiconductor SnO2 Hollow Nanosphere; Their Modified Electrode for Electrochemical Reduction and Determination of Hydrogen Peroxide, Ethanol and Oxidation of Bioactive Molecules

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The pure semiconductor SnO2 hollow nanosphere (HNS) was synthesized by a carbon sphere (CS) template-assisted in solution phase growth method using Tin (IV) chloride (SnCl4). This HNS is fabricated or formed by aggregations among the adjacent SnO2 nanoparticles at above 100 °C temperature. The difference between the valance and conduction bands gap is found to be 3.387 eV. The whole diameter of the SnO2 HNS is ranged from 300–500 nm in size with the thickness of the wall 40–50 nm. The SnO2 nanoparticle size ranges from 20 to 30 nm. The dimension of the HNS are controlled by adjusting the some parameters, such as the concentration of SnCl4, the aging time, temperature, and the size of carbon spheres. The whole HNS size and wall thickness are affected by the Sn4+, due to the electrostatic force between CS and metal ions. The fabricated semiconductor SnO2 HNS was characterized by various analytical methods such as diffusion reflectance spectrum, Fourier transform infrared spectra, an X-ray diffraction pattern, Energy-dispersive X-ray pattern, Field emission scanning electron microscope (FESEM), and High-resolution transmittance electron microscope. Then, this semiconductor SnO2 hollow nanosphere-modified glassy carbon electrode exhibited excellent electrocatalytic activity for the reduction of hydrogen peroxide (H2O2) and ethanol with corresponding electro potential appeared at − 0.630 and − 0.624 V respectively. The oxidation of bioactive molecules such as Ascorbic acid, Dopamine, and Propyl gallate, with oxidation potential appeared at 0.634, 0.698, and 0.526 V respectively in low reduction potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Qingrui, G. Yang, B. Xue, W. Changzheng, X. Yi, Eur. J. Inorg. Chem. 2006, 1643–1648 (2006)

    Google Scholar 

  2. M.U. Khalid, S.R. Khan, S. Jamil, J. Inorg. Organomet. Polym. Mater. (2018). https://doi.org/10.1007/s10904-017-0687-5

    Article  Google Scholar 

  3. I. Saadeddin, B. Pecquenard, J.P. Manaud, R. Decourt, C. Labruge`re, T. Buffeteau, G. Campet, Appl. Surf. Sci. 253, 5240–5249 (2007)

    Article  CAS  Google Scholar 

  4. X.W. Lou, L.A. Archer, Z.C. Yang, Adv. Mater. 20, 3987 (2008)

    Article  CAS  Google Scholar 

  5. M. Alexander, K. Pandian, J. Solid State Electrochem. 17, 1117–1125 (2013)

    Article  CAS  Google Scholar 

  6. E. Ozkazanc, H. Ozkazanc, O. Gundogdu, J. Inorg. Organomet. Polym. Mater. (2018). https://doi.org/10.1007/s10904-018-0887-7

    Article  Google Scholar 

  7. X.M. Sun, Y.D. Li, Angew. Chem. Int. Ed. 43, 3827 (2004)

    Article  CAS  Google Scholar 

  8. K. Mohamed, J.A. Belen, F. Mc Millan Paul, E.A. Abil, C.P. Robert, L.J. Antonio, T.D. Maria, ACS Omega 3, 13227–13238 (2018)

    Article  Google Scholar 

  9. M. Alexander, A. Saravanan, P. Arjun, K. Pandian, Anal. Sci. (2023). https://doi.org/10.1007/s44211-023-00317-5

    Article  Google Scholar 

  10. N.A. Stephenson, A.T. Bell, Anal. Bioanal. Chem. 381, 1289 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. S. Wei, W. **uzheng, W. Yuhua, J. **aomei, X. Li, L. Guangjiu, S. Zhenfan, Electrochim. Acta 87, 317–322 (2013)

    Article  Google Scholar 

  12. M.M. Rahman, W.A. Adeosun, A.M. Asiri, Microchem. J. 159, 105536 (2020)

    Article  CAS  Google Scholar 

  13. F.A. Harraz, A.A. Ismail, A.A. Ibrahim, S.A. Al-Sayari, M.S. Al-Assiri, Chem. Phys. Lett. 639, 238–242 (2015)

    Article  CAS  Google Scholar 

  14. M. Alexander, K. Pandian, J Solid State Electrochem. 17, 2173–2182 (2013)

    Article  CAS  Google Scholar 

  15. M.M. Hussain, A.M. Asiri, M.M. Rahman, Microchem. J. 159, 105534 (2020)

    Article  Google Scholar 

  16. M. Alexander, S. Suriyadharshini, S. Raghu, Ra. Kalaivani, S. Gnanam, Mater. Sci. Semicond. Process. 99, 62–67 (2019)

    Article  CAS  Google Scholar 

  17. C. Nayral, E. Viala, P. Fau, F. Senocq, C. Jumas, A. Maisonnat, B. Chaudret, Chem. Eur. J. 6, 4082 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. M.M. Rahman, A.M. Asiri, RSC Adv. 5, 63252–63263 (2015)

    Article  CAS  Google Scholar 

  19. M. Parthibavarman, V. Hariharan, C. Sekar, V.N. Singh, J. Optoelectro. Adv. Mater. 12, 1894 (2010)

    CAS  Google Scholar 

  20. M.R. Arefi-Rad, H. Kafashan, Opt. Mater. 105, 109887 (2020)

    Article  CAS  Google Scholar 

  21. A. Alasvand, H. Kafashan, J. Alloy. Compd. 817, 152711 (2020)

    Article  CAS  Google Scholar 

  22. W.W. Wang, Y.J. Zhu, L.X. Yang, Adv. Funct. Mater. 17, 59 (2007)

    Article  Google Scholar 

  23. H.A. **, C.H. Chul, P.K. Won, K.S. Bin, J. Phys. Chem. B 108, 9815 (2004)

    Article  Google Scholar 

  24. M. Li, Q. Wu, M. Wen, J. Shi, Nanoscale Res. Lett. 4, 1365 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Gnanam, V. Rajendran, J. Sol.-Gel. Sci. Technol. 53, 555–559 (2010)

    Article  CAS  Google Scholar 

  26. N. Jia, Q. Zhou, L. Liu, M. Yan, Z. Jiang, J. Electroanal. Chem. 580, 213 (2005)

    Article  CAS  Google Scholar 

  27. H.R. Kim, K.I. Choi, K.M. Kim, I.D. Kim, Chem. Commun. 46, 5061 (2010)

    Article  CAS  Google Scholar 

  28. F. Li, J. Xu, X. Yu, L. Chen, J. Zhu, Z. Yang, Sensor and Actuator B 81, 165 (2002)

    Article  CAS  Google Scholar 

  29. D.L. McCorkle, R.J. Warmack, S.V. Patel, T. Mlsna, S.R. Hunter, T.L. Ferrell, Sens. Actuators B 107, 892 (2005)

    Article  CAS  Google Scholar 

  30. F.A. Harraz, A.A. Ismail, H. Bouzid, S.A. Al-Sayari, A. Al-Hajry, M.S. Al-Assiri, Appl. Sur. Sci. 307, 704 (2014)

    Article  CAS  Google Scholar 

  31. M.M. Alam, A.M. Asiri, M.M.M.A. RahmanIslam, SN Appl. Sci. 2, 1953 (2020)

    Article  CAS  Google Scholar 

  32. C. Haijie, L. Haiquan, N. Tianjun, P. Yingjie, Z. Yong, Z. Yongheng, Front. Chem. 7, 843 (2019)

    Article  Google Scholar 

  33. S. Ling, W. Na, L. Wei, Y. Guangming, W. Zefeng, Int. J. Electrochem. Sci. (2021). https://doi.org/10.20964/2021.05.27

    Article  Google Scholar 

  34. M. **, C. Meifeng, L. Hua, X. Shouqing, Z. Qi, W. Xueliang, Microchem. J. 183, 107954 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to researchers supporting project number (RSP2023R165), King Saud University Riyadh, Saudi Arabia.

Professor. Dr. K Pandian, Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai- 600025, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Contributions

AM did all the research work and wrote the main manuscript text. RP gives lab support. DA contributed to taking FESEM images. VRMR took HRTEM images.

Corresponding authors

Correspondence to Alexander Marimuthu or Vasudeva Reddy Minnam Reddy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marimuthu, A., Periyannan, R., Ali, D. et al. Synthesis of Semiconductor SnO2 Hollow Nanosphere; Their Modified Electrode for Electrochemical Reduction and Determination of Hydrogen Peroxide, Ethanol and Oxidation of Bioactive Molecules. J Inorg Organomet Polym 33, 2943–2953 (2023). https://doi.org/10.1007/s10904-023-02734-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02734-5

Keywords

Navigation