Log in

Growth of CoFe2O4 Nanoparticles on Graphite Sheets for High-Performance Electromagnetic Wave Absorption in Ku-Band

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Graphite holds a great promise as a good electromagnetic (EM) wave absorbing material due to its good conduction loss, low density, and higher chemical stability. In the microwave absorption (MA) field, intrinsic EM properties and nano-composition of functional materials substantially impact their EM wave energy conversion. A facile solvothermal method is adapted to synthesize cobalt ferrite/graphite sheets (CoFe2O4/Grs) composites with different Grs compositions. EM parameters, morphological structure, and compositions for prepared composites were studied using various investigative techniques. The minimum reflection loss (RLmin) of CoFe2O4/Grs composite for 10 wt% of Grs was recorded to − 31.98 dB at 1.2 mm with an effective absorption bandwidth of 5.6 GHz at 1.3 mm, attributing to the carbonization of CoFe2O4 revam** it into MA material and tuning for EM wave energy conversion. This study supports the designing and development of exceptional Gr-based composites as a high-efficiency and insubstantial EM wave absorber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Han, X. Yin, W. Duan, S. Ren, L. Zhang, L. Cheng, Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 36, 2695–2703 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.04.003

    Article  CAS  Google Scholar 

  2. H. Wang, Z. Yan, J. An, J. He, Y. Hou, H. Yu, N. Ma, G. Yu, D. Sun, Iron cobalt/polypyrrole nanoplates with tunable broadband electromagnetic wave absorption. RSC Adv. 6, 92152–92158 (2016). https://doi.org/10.1039/c6ra16003d

    Article  CAS  Google Scholar 

  3. Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. **ao, H. Chen, Z. Huang, Y. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788

    Article  CAS  PubMed  Google Scholar 

  4. A. Saleem, Y. Zhang, H. Gong, M.K. Majeed, J. **g, X. Lin, J. Mao, M. Zeeshan Ashfaq, Structural, magnetic and dielectric properties of nano-crystalline spinel NixCu1xFe2O4. J. Alloys Compd. 825, 154017 (2020). https://doi.org/10.1016/J.JALLCOM.2020.154017

    Article  CAS  Google Scholar 

  5. R. Shu, Y. Wu, Z. Li, J. Zhang, Z. Wan, Y. Liu, M. Zheng, Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band. Compos. Sci. Technol. 184, 107839 (2019). https://doi.org/10.1016/j.compscitech.2019.107839

    Article  CAS  Google Scholar 

  6. K. Shen, Z.H. Huang, K. Hu, W. Shen, S. Yu, J. Yang, G. Yang, F. Kang, Advantages of natural microcrystalline graphite filler over petroleum coke in isotropic graphite preparation. Carbon N. Y. 90, 197–206 (2015). https://doi.org/10.1016/J.CARBON.2015.03.068

    Article  CAS  Google Scholar 

  7. R. Shu, G. Zhang, X. Wang, X. Gao, M. Wang, Y. Gan, J. Shi, J. He, Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem. Eng. J. 337, 242–255 (2018). https://doi.org/10.1016/J.CEJ.2017.12.106

    Article  CAS  Google Scholar 

  8. B. Zhang, J. Wang, T. Wang, X. Su, S. Yang, W. Chen, J. Wang, J. Sun, J. Peng, High-performance microwave absorption epoxy composites filled with hollow nickel nanoparticles modified graphene via chemical etching method. Compos. Sci. Technol. 176, 54–63 (2019). https://doi.org/10.1016/J.COMPSCITECH.2019.04.001

    Article  CAS  Google Scholar 

  9. N. Zhang, Y. Huang, M. Zong, X. Ding, S. Li, M. Wang, Coupling CoFe2O4 and SnS2 nanoparticles with reduced graphene oxide as a high-performance electromagnetic wave absorber. Ceram. Int. 14, 15701–15708 (2016). https://doi.org/10.1016/J.CERAMINT.2016.07.028

    Article  Google Scholar 

  10. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N. Y. 45, 1558–1565 (2007). https://doi.org/10.1016/J.CARBON.2007.02.034

    Article  CAS  Google Scholar 

  11. Z. Zhu, X. Sun, G. Li, H. Xue, H. Guo, X. Fan, X. Pan, J. He, Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band. J. Magn. Magn. Mater. 377, 95–103 (2015). https://doi.org/10.1016/J.JMMM.2014.10.079

    Article  CAS  Google Scholar 

  12. P. Heidari, S.M. Masoudpanah, A facial synthesis of MgFe2O4/RGO nanocomposite powders as a high performance microwave absorber. J. Alloys Compd. 834, 155166 (2020). https://doi.org/10.1016/J.JALLCOM.2020.155166

    Article  CAS  Google Scholar 

  13. R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019). https://doi.org/10.1016/J.CEJ.2019.01.090

    Article  CAS  Google Scholar 

  14. Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4–rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 113(11), 1426–1436 (2018). https://doi.org/10.1007/S12274-017-1758-1

    Article  Google Scholar 

  15. V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon N. Y. 50, 2202–2208 (2012). https://doi.org/10.1016/J.CARBON.2012.01.033

    Article  CAS  Google Scholar 

  16. R. Shu, W. Li, X. Zhou, D. Tian, G. Zhang, Y. Gan, J. Shi, J. He, Facile preparation and microwave absorption properties of RGO/MWCNTs/ZnFe2O4 hybrid nanocomposites. J. Alloys Compd. 743, 163–174 (2018). https://doi.org/10.1016/J.JALLCOM.2018.02.016

    Article  CAS  Google Scholar 

  17. S.L. Shi, J. Liang, Effect of multiwall carbon nanotubes on electrical and dielectric properties of yttria-stabilized zirconia ceramic. J. Am. Ceram. Soc. 89, 3533–3535 (2006). https://doi.org/10.1111/J.1551-2916.2006.01232.X

    Article  CAS  Google Scholar 

  18. C. Brosseau, A. Beroual, Computational electromagnetics and the rational design of new dielectric heterostructures. Prog. Mater. Sci. 48, 373–456 (2003). https://doi.org/10.1016/S0079-6425(02)00013-0

    Article  Google Scholar 

  19. A. Saleem, Y. Zhang, H. Gong, M.K. Majeed, M.Z. Ashfaq, J. **g, X. Lin, M. Sheng, Carbon nanostructure-reinforced SiCw/Si3N4 composite with enhanced thermal conductivity and mechanical properties. RSC Adv. 10, 15023–15029 (2020). https://doi.org/10.1039/D0RA00876A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. P. Colombo, G. Mera, R. Riedel, G.D. Sorarù, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93, 1805–1837 (2010). https://doi.org/10.1111/J.1551-2916.2010.03876.X

    Article  CAS  Google Scholar 

  21. A. Saleem, Y. Zhang, H. Gong, M.K. Majeed, J. **g, X. Lin, M.Z. Ashfaq, Enhanced thermal conductivity and mechanical properties of a GNP reinforced Si3N4 composite. RSC Adv. 9, 39986–39992 (2019). https://doi.org/10.1039/C9RA09286B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Saleem, Y. Zhang, H. Gong, M.K. Majeed, Fluoride doped SiC/Si3N4 composite as a high thermal conductive material with enhanced mechanical properties. Ceram. Int. 45, 21004–21010 (2019). https://doi.org/10.1016/J.CERAMINT.2019.06.289

    Article  CAS  Google Scholar 

  23. A. Saleem, R. Iqbal, A. Hussain, M.S. Javed, M.Z. Ashfaq, M. Imran, M.M. Hussain, A.R. Akbar, S. Jun, M.K. Majeed, Recent advances and perspectives in carbon-based fillers reinforced Si3N4 composite for high power electronic devices. Ceram. Int. 48, 13401–13419 (2022). https://doi.org/10.1016/J.CERAMINT.2022.02.050

    Article  CAS  Google Scholar 

  24. A. Saleem, M.K. Majeed, M.Z. Ashfaq, G. Yasin, R. Iqbal, X. Sun, Y. Zhang, H. Gong, Fluoride-doped MWCNT/Si3N4 composite with improved mechanical and structural properties. Chin. J. Phys. 72, 606–615 (2021). https://doi.org/10.1016/J.CJPH.2021.05.010

    Article  CAS  Google Scholar 

  25. J. Kong, M. Wang, J. Zou, L. An, Soluble and meltable hyperbranched polyborosilazanes toward high-temperature stable SiBCN ceramics. ACS Appl. Mater. Interfaces. 7, 6733–6744 (2015). https://doi.org/10.1021/AM509129A/SUPPL_FILE/AM509129A_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  26. A. Saleem, Y. Zhang, H. Gong, M.K. Majeed, X. Lin, J. **g, M. Sheng, C. Zhao, Dielectric and microwave absorption properties of fluoride-doped MWCNT/Si3N4 composite. J. Mater. Sci. Mater. Electron. 31, 2918–2925 (2020). https://doi.org/10.1007/S10854-019-02836-2

    Article  CAS  Google Scholar 

  27. A. Saleem, Y. Zhang, H. Gong, M.K. Majeed, X. Lin, M.M. Hussain, M.Z. Ashfaq, Electromagnetic wave absorption performance of Ni doped Cu-ferrite nanocrystals. Mater. Res. Express. 7, 016117 (2020). https://doi.org/10.1088/2053-1591/AB6C1A

    Article  CAS  Google Scholar 

  28. G.F. Goya, H.R. Rechenberg, Reversibility of the synthesis-decomposition reaction in the ball-milled Cu–Fe–O system. J. Phys. Condens. Matter. 10, 11829 (1998). https://doi.org/10.1088/0953-8984/10/50/020

    Article  CAS  Google Scholar 

  29. X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, Y. Du, Thermal conversion of an Fe3O4@metal–organic framework: a new method for an efficient Fe–Co/nanoporous carbon microwave absorbing material. Nanoscale 7, 12932–12942 (2015). https://doi.org/10.1039/C5NR03176A

    Article  CAS  PubMed  Google Scholar 

  30. C. Caizer, M. Stefanescu, Magnetic characterization of nanocrystalline Ni–Zn ferrite powder prepared by the glyoxylate precursor method. J. Phys. D. Appl. Phys. 35, 3035 (2002). https://doi.org/10.1088/0022-3727/35/23/301

    Article  CAS  Google Scholar 

  31. M. Kumari, M.C. Bhatnagar, Study of structural and magnetic properties of cobalt ferrite nanoparticles sintered at different temperature. AIPC. 1953, 120075 (2018). https://doi.org/10.1063/1.5033140

    Article  CAS  Google Scholar 

  32. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys. 112, 084321 (2012). https://doi.org/10.1063/1.4759436

    Article  CAS  Google Scholar 

  33. J.Z. He, X.X. Wang, Y.L. Zhang, M.S. Cao, Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 4, 7130–7140 (2016). https://doi.org/10.1039/C6TC02020H

    Article  CAS  Google Scholar 

  34. J. Zhang, R. Shu, Y. Ma, X. Tang, G. Zhang, Iron ions do** enhanced electromagnetic wave absorption properties of tin dioxide/reduced graphene oxide nanocomposites. J. Alloys Compd. 777, 1115–1123 (2019). https://doi.org/10.1016/J.JALLCOM.2018.11.100

    Article  CAS  Google Scholar 

  35. D. Li, B. Zhang, W. Liu, X. Liang, G. Ji, Tailoring the input impedance of FeCo/C composites with efficient broadband absorption. Dalt. Trans. 46, 14926–14933 (2017). https://doi.org/10.1039/C7DT02840G

    Article  CAS  Google Scholar 

  36. J. Liu, M.-S. Cao, Q. Luo, H.-L. Shi, W.-Z. Wang, J. Yuan, Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces. 8, 22615–22622 (2016). https://doi.org/10.1021/ACSAMI.6B05480

    Article  CAS  PubMed  Google Scholar 

  37. Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, M. He, Z. Ren, X. Zheng, Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon N. Y. 115, 493–502 (2017). https://doi.org/10.1016/J.CARBON.2017.01.036

    Article  CAS  Google Scholar 

  38. R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, J. He, Fabrication of reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite hybrid composites as high-performance microwave absorbers. J. Alloys Compd. 736, 1–11 (2018). https://doi.org/10.1016/J.JALLCOM.2017.11.084

    Article  CAS  Google Scholar 

  39. T. George, A.T. Sunny, T. Varghese, Magnetic properties of cobalt ferrite nanoparticles synthesized by sol-gel method. IOP Conf. Ser. Mater. Sci. Eng. 73, 012050 (2015). https://doi.org/10.1088/1757-899X/73/1/012050

    Article  CAS  Google Scholar 

  40. P. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4, 6362–6370 (2016). https://doi.org/10.1039/C6TC01718E

    Article  CAS  Google Scholar 

  41. N. Karthigayan, P. Manimuthu, M. Priya, S. Sagadevan, Synthesis and characterization of NiFe2O4, CoFe2O4 and CuFe2O4 thin films for anode material in Li-ion batteries. Nanomater. Nanotechnol. (2017). https://doi.org/10.1177/1847980417711084

    Article  Google Scholar 

  42. J. Zhang, R. Shu, C. Guo, R. Sun, Y. Chen, J. Yuan, Fabrication of nickel ferrite microspheres decorated multi-walled carbon nanotubes hybrid composites with enhanced electromagnetic wave absorption properties. J. Alloys Compd. 784, 422–430 (2019). https://doi.org/10.1016/J.JALLCOM.2019.01.073

    Article  CAS  Google Scholar 

  43. B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. **, X.Y. Fang, W.Z. Wang, J. Yuan, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon N. Y. 65, 124–139 (2013). https://doi.org/10.1016/J.CARBON.2013.07.110

    Article  CAS  Google Scholar 

  44. W.-L. Song, M.-S. Cao, Z.-L. Hou, X.-Y. Fang, X.-L. Shi, J. Yuan, High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94, 233110 (2009). https://doi.org/10.1063/1.3152764

    Article  CAS  Google Scholar 

  45. M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. **, Z.L. Hou, J. Yuan, Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4, 6949–6956 (2012). https://doi.org/10.1021/AM3021069

    Article  CAS  PubMed  Google Scholar 

  46. S. Wang, H. Gong, Y. Zhang, M.Z. Ashfaq, Microwave absorption properties of polymer-derived SiCN(CNTs) composite ceramics. Ceram. Int. 47, 1294–1302 (2021). https://doi.org/10.1016/J.CERAMINT.2020.08.250

    Article  CAS  Google Scholar 

  47. Y. Liu, X. Liu, E. **nyu, B. Wang, Z. Jia, Q. Chi, G. Wu, Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption. J. Mater. Sci. Technol. 103, 157–164 (2022). https://doi.org/10.1016/J.JMST.2021.06.034

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the National Science Foundation of China (Grant No. 51572154).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyu Gong or Adil Saleem.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashfaq, M.Z., Ashfaq, A., Gong, H. et al. Growth of CoFe2O4 Nanoparticles on Graphite Sheets for High-Performance Electromagnetic Wave Absorption in Ku-Band. J Inorg Organomet Polym 32, 4504–4514 (2022). https://doi.org/10.1007/s10904-022-02447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02447-1

Keywords

Navigation