Log in

Room-Temperature Chemiresistive Gas Sensing of SnO2 Nanowires: A Review

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Innovative chemiresitive gas sensors with strong sensing qualities that operate at room temperature are much more appealing due to their properties of long-life cycle, high stability, and lower usage of power. As we know, n-type semiconducting metal oxide like SnO2 received a lot of interest for its gas sensing applications. The rapid progress of different synthesis processes has allowed researchers to investigate a wide range of new nanostructures and their incorporation into smart gas sensing devices. Generally, conventional metal oxide-based sensors are functioned at very high a temperature, which causes high power consumption and low selectivity. Therefore, to remove this issue, metal oxides doped with various nanostructures are the first choice due to their advantages: high surface-area-to-volume ratio, efficient electron transfer, improved and adjustable surface reactivity, and quick access response time, and short recovery time. In this review, we have discussed the preparation of SnO2 nanowires through various methods and discussed the state of the art of vapour or gas sensors based on tin oxide nanowires and can exhibit sensing properties at room temperature. An overview of the wealth of material, methods, and sensing mechanisms like response time, analytical ranges, and operating temperatures are also explained. In the last section, we discussed the current status and challenges and depicted the potential future aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. V. Mounasamy, G.K. Mani, S. Madanagurusamy, Vanadium oxide nanostructures for chemiresistive gas and vapour sensing: a review on state of the art. Microchim. Acta 187(4), 1–29 (2020). https://doi.org/10.1007/s00604-020-4182-2

    Article  CAS  Google Scholar 

  2. N. Yamazoe, Toward innovations of gas sensor technology. Sens. Actuators B Chem. 108(1–2), 2–14 (2005). https://doi.org/10.1016/j.snb.2004.12.075

    Article  CAS  Google Scholar 

  3. N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O.N. Oliveira, L. Lin, A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 185(4), 1–16 (2018). https://doi.org/10.1007/s00604-018-2750-5

    Article  CAS  Google Scholar 

  4. R. Malik, N. Joshi, V.K. Tomer, Advances in the designs and mechanisms of MoO3 nanostructures for gas sensors: a holistic review. Mater. Adv. 2(13), 4190–4227 (2021). https://doi.org/10.1039/D1MA00374G

    Article  CAS  Google Scholar 

  5. H. Wang, W.P. Lustig, J. Li, Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chem. Soc. Rev. 47(13), 4729–4756 (2018). https://doi.org/10.1039/C7CS00885F

    Article  CAS  PubMed  Google Scholar 

  6. A. Gusain, N.J. Joshi, P.V. Varde, D.K. Aswal, Flexible NO gas sensor based on conducting polymer poly [N-9′-heptadecanyl-2, 7-carbazole-alt-5, 5-(4′, 7′-di-2-thienyl-2′, 1′, 3′-benzothiadiazole)](PCDTBT). Sens. Actuators B Chem. 239, 734–745 (2017). https://doi.org/10.1016/j.snb.2016.07.176

    Article  CAS  Google Scholar 

  7. R. Malik, V.K. Tomer, N. Joshi, V. Chaudhary, L. Lin, Nanosensors for monitoring indoor pollution in smart cities, in Nanosensors for Smart Cities. ed. by B. Han, V.K. Tomer, T. Anh Nguyen, A. Farmani, P.K. Singh (Elsevier, Amsterdam, 2020), pp. 251–266

    Chapter  Google Scholar 

  8. F. Mustafa, S. Andreescu, Chemical and biological sensors for food-quality monitoring and smart packaging. Foods 7(10), 168 (2018). https://doi.org/10.3390/foods7100168

    Article  CAS  PubMed Central  Google Scholar 

  9. G. Korotcenkov, B.K. Cho, Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens. Actuators B Chem. 244, 182–210 (2017). https://doi.org/10.1016/j.snb.2016.12.117

    Article  CAS  Google Scholar 

  10. Y. Kong, Y. Li, X. Cui, L. Su, D. Ma, T. Lai, L. Yao, X. **ao, Y. Wang, SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: a review. Nano Mater. Sci. (2021). https://doi.org/10.1016/j.nanoms.2021.05.006

    Article  Google Scholar 

  11. A. Hartzell, M. da Silva, Reliability issues in miniaturized sensors: importance of standards. What is needed?. in, 2007 IEEE Sensors, pp. 44–44 (2007). https://doi.org/10.1109/ICSENS.2007.4388331

  12. S. Thomas, N. Joshi, V.K. Tomer, Functional Nanomaterials: Advances in Gas Sensing Technologies, 1st edn. (Springer, Singapore, 2020), p. 1

    Book  Google Scholar 

  13. N. Joshi, M.L. Braunger, F.M. Shimizu, A. Riul, O.N. Oliveira, Two-dimensional transition metal dichalcogenides for gas sensing applications, in Nanosensors for Environmental Applications. ed. by S.K. Tuteja, D. Arora, N. Dilbaghi, E. Lichtfouse (Springer, Cham, 2020), pp. 131–155

    Chapter  Google Scholar 

  14. A. Kar, A. Patra, Recent development of core–shell SnO2 nanostructures and their potential applications. J. Mater. Chem. C 2(33), 6706–6722 (2014). https://doi.org/10.1039/C4TC01030B

    Article  CAS  Google Scholar 

  15. X. Pang, M.D. Shaw, S. Gillot, A.C. Lewis, The impacts of water vapour and co-pollutants on the performance of electrochemical gas sensors used for air quality monitoring. Sens. Actuators B Chem. 266, 674–684 (2018). https://doi.org/10.1016/j.snb.2018.03.144

    Article  CAS  Google Scholar 

  16. Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. **, L.T. Kong, J.H. Liu, Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3), 2610–2631 (2012). https://doi.org/10.3390/s120302610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. W. Qing, L. Yong-**, L. Wei-long, Development of a multi-component infrared gas sensor detection system. J. Phys. Conf. Ser. 1229(1), 012068 (2019). https://doi.org/10.1088/1742-6596/1229/1/012068

    Article  CAS  Google Scholar 

  18. E.M. Materon, F.R. Gómez, N. Joshi, C.J. Dalmaschio, E. Carrilho, O.N. Oliveira Jr., Smart materials for electrochemical flexible nanosensors: advances and applications, in Nanosensors for Smart Manufacturing. ed. by S. Thomas, T. Anh Nguyen, M. Ahmadi, A. Farmani, G. Yasin (Elsevier, Amsterdam, 2021), pp. 347–371

    Chapter  Google Scholar 

  19. C.M. Miyazaki, N. Joshi, O.N. Oliveira, F.M. Shimizu, Metal oxides and sulfide-based biosensors for monitoring and health control, in Metal, Metal-Oxides and Metal Sulfides for Batteries, Fuel Cells, Solar Cells, Photocatalysis and Health Sensors. ed. by S. Rajendran, H. Karimi-Maleh, J. Qin, E. Lichtfouse (Springer, Cham, 2021), pp. 169–208

    Chapter  Google Scholar 

  20. E.M. Materon, A. Wong, L.M. Gomes, G. Ibanez-Redin, N. Joshi, O.N. Oliveira, R.C. Faria, Combining 3D printing and screen-printing in miniaturized, disposable sensors with carbon paste electrodes. J. Mater. Chem. C 9(17), 5633–5642 (2021). https://doi.org/10.1039/D1TC01557E

    Article  CAS  Google Scholar 

  21. E.M. Materon, N. Joshi, F.M. Shimizu, R.C. Faria, O.N. Oliveira Jr., Electrochemical Sensors Based on Metal Oxide-Boron Nitride Nanocomposites in the Detection of Biomolecules and Toxic Chemicals, Metal Oxides in Nanocomposite-Based Electrochemical Sensors for Toxic Chemicals (Elsevier, Amsterdam, 2021), pp. 293–311

    Book  Google Scholar 

  22. M. Vasudevan, M.J. Tai, V. Perumal, S.C. Gopinath, S.S. Murthe, M. Ovinis, N.M. Mohamed, N. Joshi, Cellulose acetate-MoS2 nanopetal hybrid: a highly sensitive and selective electrochemical aptasensor of Troponin I for the early diagnosis of acute myocardial infarction. J. Taiwan. Inst. Chem. Eng. 118, 245–253 (2021). https://doi.org/10.1016/j.jtice.2021.01.016

    Article  CAS  Google Scholar 

  23. M. Vasudevan, M.J. Tai, V. Perumal, S.C. Gopinath, S.S. Murthe, M. Ovinis, N.M. Mohamed, N. Joshi, Highly sensitive and selective acute myocardial infarction detection using aptamer-tethered MoS2 nanoflower and screen-printed electrodes. Biotechnol. Appl. Biochem. (2020). https://doi.org/10.1002/bab.2060

    Article  PubMed  Google Scholar 

  24. E.M. Materon, G. Ibáñez-Redín, N. Joshi, D. Gonçalves, O.N. Oliveira, R.C. Faria, Analytical detection of pesticides, pollutants, and pharmaceutical waste in the environment, in Nanosensors for Environmental Applications. ed. by S.K. Tuteja, D. Arora, N. Dilbaghi, E. Lichtfouse (Springer, Cham, 2020), pp. 87–129

    Chapter  Google Scholar 

  25. G. Ibáñez-Redín, N. Joshi, G.F. Nascimento, D. Wilson, M.E. Melendez, A.L. Carvalho, R.M. Reis, D. Gonçalves, O.N. Oliveira, Determination of p53 biomarker using an electrochemical immunoassay based on layer-by-layer films with NiFe2O4 nanoparticles. Microchim. Acta 187(11), 1–10 (2020). https://doi.org/10.1007/s00604-020-04594-z

    Article  CAS  Google Scholar 

  26. J. Hodgkinson, R.P. Tatam, Optical gas sensing: a review. Meas. Sci. Technol. 24(1), 012004 (2012). https://doi.org/10.1088/0957-0233/24/1/012004

    Article  CAS  Google Scholar 

  27. R. Malik, V.K. Tomer, V. Chaudhary, N. Joshi, S. Duhan, Semiconducting metal oxides for photocatalytic and gas sensing applications, in Metal Oxide Nanocomposites: Synthesis and Applications. ed. by B. Raneesh, P.M. Visakh (Wiley, Hoboken, 2020), pp. 265–301

    Chapter  Google Scholar 

  28. N. Joshi, V.K. Tomer, R. Malik, J. Nie, Recent advances on UV-enhanced oxide nanostructures gas sensors, in Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. ed. by S. Thomas, N. Joshi, V. Tomer (Springer, Singapore, 2020), pp. 142–159

    Google Scholar 

  29. W. Tang, J. Wang, Enhanced gas sensing mechanisms of metal oxide heterojunction gas sensors. Acta Physico-ChimicaSinica 32(5), 1087–1104 (2016). https://doi.org/10.3866/PKU.WHXB201602224

    Article  CAS  Google Scholar 

  30. A. Ponzoni, C. Baratto, N. Cattabiani, M. Falasconi, V. Galstyan, E. Nunez-Carmona, F. Rigoni, V. Sberveglieri, G. Zambotti, D. Zappa, Metal oxide gas sensors, a survey of selectivity issues addressed at the SENSOR Lab, Brescia (Italy). Sensors 17(4), 714 (2017). https://doi.org/10.3390/s17040714

    Article  PubMed Central  Google Scholar 

  31. T. Gessner, K. Gottfried, R. Hoffmann, C. Kaufmann, U. Weiss, E. Charetdinov, P. Hauptmann, R. Lucklum, B. Zimmermann, U. Dietel, G. Springer, M. Vogel, Metal oxide gas sensor for high temperature application. Microsyst. Technol. 6(5), 169–174 (2000). https://doi.org/10.1007/s005420000048

    Article  Google Scholar 

  32. C. Wang, L. Yin, L. Zhang, D. **ang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010). https://doi.org/10.3390/s100302088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A. Arbab, A. Spetz, I. Lundström, Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices. Sens. Actuators B Chem. 15(1–3), 19–23 (1993). https://doi.org/10.1016/0925-4005(93)85022-3

    Article  CAS  Google Scholar 

  34. X. Liu, N. Chen, B. Han, X. **ao, G. Chen, I. Djerdj, Y. Wang, Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale 7(36), 14872–14880 (2015). https://doi.org/10.1039/C5NR03585F

    Article  CAS  PubMed  Google Scholar 

  35. I. Rawal, Facial synthesis of hexagonal metal oxide nanoparticles for low temperature ammonia gas sensing applications. RSC Adv. 5(6), 4135–4142 (2015). https://doi.org/10.1039/C4RA12747A

    Article  CAS  Google Scholar 

  36. B. Wang, L.F. Zhu, Y.H. Yang, N.S. Xu, G.W. Yang, Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J. Phys. Chem. C. 112(17), 6643–6647 (2008). https://doi.org/10.1021/jp8003147

    Article  CAS  Google Scholar 

  37. H. Huang, C.Y. Ong, J. Guo, T. White, M.S. Tse, O.K. Tan, Pt surface modification of SnO2 nanorod arrays for CO and H2 sensors. Nanoscale 2(7), 1203–1207 (2010). https://doi.org/10.1039/C0NR00159G

    Article  CAS  PubMed  Google Scholar 

  38. W. Chen, Z. Qin, Y. Liu, Y. Zhang, Y. Li, S. Shen, Z.M. Wang, H.Z. Song, Promotion on acetone sensing of single SnO2 nanobelt by Eu do**. Nanoscale Res. Lett. 12(1), 1–7 (2017). https://doi.org/10.1186/s11671-017-2177-7

    Article  CAS  Google Scholar 

  39. S.H. Hahn, N. Barsan, U. Weimar, S.G. Ejakov, J.H. Visser, R.E. Soltis, CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Films 436(1), 17–24 (2003). https://doi.org/10.1016/S0040-6090(03)00520-0

    Article  CAS  Google Scholar 

  40. P. Stefanov, G. Atanasova, E. Manolov, Z. Raicheva, V. Lazarova, Preparation and characterization of SnO2 films for sensing applications. J. Phys. Conf. Ser. 100(8), 082046 (2008). https://doi.org/10.1088/1742-6596/100/8/082046

    Article  CAS  Google Scholar 

  41. M. Wu, W. Zeng, Y. Li, Hydrothermal synthesis of novel SnO2 nanoflowers and their gas-sensing properties. Mater. Lett. 104, 34–36 (2013). https://doi.org/10.1016/j.matlet.2013.04.010

    Article  CAS  Google Scholar 

  42. Y. Wang, X. Wu, Y. Li, Z. Zhou, Mesostructured SnO2 as sensing material for gas sensors. Solid-State Electron. 48(5), 627–632 (2004). https://doi.org/10.1016/j.sse.2003.09.015

    Article  CAS  Google Scholar 

  43. E. Garnett, L. Mai, P. Yang, Introduction: 1D nanomaterials/nanowires. Chem. Rev. 119(15), 8955–8957 (2019). https://doi.org/10.1021/acs.chemrev.9b00423

    Article  CAS  PubMed  Google Scholar 

  44. Z. Song, S. Xu, M. Li, W. Zhang, H. Yu, Y. Wang, H. Liu, Solution-processed SnO2 nanowires for sensitive and fast-response H2S detection. Thin Solid Films 618, 232–237 (2016). https://doi.org/10.1016/j.tsf.2016.08.020

    Article  CAS  Google Scholar 

  45. A. Kumar, N. Joshi, Self-powered environmental monitoring gas sensors: piezoelectric and triboelectric approaches, in Micro and Nano Technologies Nanobatteries and Nanogenerators. ed. by H. Song, R. Venkatachalam, T.A. Nguyen, H.B. Wu, P. Nguyen-Tri (Elsevier, Amsterdam, 2021), pp. 463–489

    Chapter  Google Scholar 

  46. R.A. Gonçalves, R.P. Toledo, N. Joshi, O.M. Berengue, Green synthesis and applications of ZnO and TiO2 nanostructures. Molecules 26(8), 2236 (2021). https://doi.org/10.3390/molecules26082236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. **, X. Liu, B. Lei, C. Zhou, Laser ablation synthesis and electron transport studies of tin oxide nanowires. Adv. Mater. 15(20), 1754–1757 (2003). https://doi.org/10.1002/adma.200305439

    Article  CAS  Google Scholar 

  48. G. Korotcenkov, Tin Oxide Materials: Synthesis, Properties, and Applications, 1st edn. (Elsevier, Amsterdam, 2020), p. 3

    Google Scholar 

  49. S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112–255 (2014). https://doi.org/10.1016/j.pmatsci.2014.06.003

    Article  CAS  Google Scholar 

  50. L. Gracia, A. Beltrán, J. Andrés, Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study. J. Phys. Chem. 111(23), 6479–6485 (2007). https://doi.org/10.1021/jp067443v

    Article  CAS  Google Scholar 

  51. L.A. Errico, Ab initio FP-LAPW study of the semiconductors SnO and SnO2. Phys. B Condens. Matter 389(1), 140–144 (2007). https://doi.org/10.1016/j.physb.2006.07.041

    Article  CAS  Google Scholar 

  52. J. Xu, S. Huang, Z. Wang, First principle study on the electronic structure of fluorine-doped SnO2. Solid State Commun. 149(13–14), 527–531 (2009). https://doi.org/10.1016/j.ssc.2009.01.010

    Article  CAS  Google Scholar 

  53. L.I. Nadaf, K.S. Venkatesh, Synthesis and characterization of tin oxide nanoparticles by co-precipitation method. IOSR J. Appl. Chem. 9(2), 1–4 (2016)

    CAS  Google Scholar 

  54. B. Wang, Y.H. Yang, C.X. Wang, G.W. Yang, Growth and photoluminescence of SnO2 nanostructures synthesized by Au–Ag alloying catalyst assisted carbothermal evaporation. Chem. Phys. Lett. 407(4–6), 347–353 (2005). https://doi.org/10.1016/j.cplett.2005.03.119

    Article  CAS  Google Scholar 

  55. M. Batzill, U. Diebold, The surface and materials science of tin oxide. Prog. Surf. Sci. 79(2–4), 47–154 (2005). https://doi.org/10.1016/j.progsurf.2005.09.002

    Article  CAS  Google Scholar 

  56. M. Kwoka, B. Lyson-Sypien, A. Kulis, D. Zappa, E. Comini, Surface properties of SnO2 nanowires deposited on Si substrate covered by Au catalyst studies by XPS, TDS and SEM. Nanomaterials 8(9), 738 (2018). https://doi.org/10.3390/nano8090738

    Article  CAS  PubMed Central  Google Scholar 

  57. R.K. Joshi, A. Kumar, Room temperature gas detection using silicon nanowires. Mater. Today 14(1–2), 52 (2011). https://doi.org/10.1016/S1369-7021(11)70034-7

    Article  Google Scholar 

  58. Y. Cai, H. Fan, One-step self-assembly economical synthesis of hierarchical ZnO nanocrystals and their gas-sensing properties. Cryst. Eng. Comm. 15(44), 9148–9153 (2013). https://doi.org/10.1039/C3CE41374H

    Article  CAS  Google Scholar 

  59. J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu, B. Cao, High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sens. Actuators B Chem. 199, 339–345 (2019). https://doi.org/10.1016/j.snb.2014.04.010

    Article  CAS  Google Scholar 

  60. P. Patil, G. Gaikwad, D.R. Patil, J. Naik, Synthesis of 1-D ZnO nanorods and polypyrrole/1-D ZnO nanocomposites for photocatalysis and gas sensor applications. Bull. Mater. Sci. 39(3), 655–665 (2016). https://doi.org/10.1007/s12034-016-1208-9

    Article  CAS  Google Scholar 

  61. L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuator A Phys. 267, 242–261 (2017). https://doi.org/10.1016/j.sna.2017.10.021

    Article  CAS  Google Scholar 

  62. Z.S. Hosseini, A. Mortezaali, Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures. Sens. Actuators B Chem. 207, 865–871 (2015). https://doi.org/10.1016/j.snb.2014.10.085

    Article  CAS  Google Scholar 

  63. G. Korotcenkov, B.K. Cho, The role of grain size on the thermal instability of nanostructured metal oxides used in gas sensor applications and approaches for grain-size stabilization. Prog. Cryst. Growth Charact Mater. 58(4), 167–208 (2012). https://doi.org/10.1016/j.pcrysgrow.2012.07.001

    Article  CAS  Google Scholar 

  64. D. Zhang, C. Jiang, Y. Yao, D. Wang, Y. Zhang, Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties. Sens. Actuators B Chem. 253, 1120–1128 (2017). https://doi.org/10.1016/j.snb.2017.07.173

    Article  CAS  Google Scholar 

  65. X. Geng, C. Zhang, M. Debliquy, Cadmium sulfide activated zinc oxide coatings deposited by liquid plasma spray for room temperature nitrogen dioxide detection under visible light illumination. Ceram. Int. 42(4), 4845–4852 (2016). https://doi.org/10.1016/j.ceramint.2015.11.170

    Article  CAS  Google Scholar 

  66. Y. Wu, N. Joshi, S. Zhao, H. Long, L. Zhou, G. Ma, B. Peng, O.N. Oliveira Jr., A. Zettl, L. Lin, NO2 gas sensors based on CVD tungsten diselenide monolayer. Appl. Surf. Sci. 529, 147110 (2020). https://doi.org/10.1016/j.apsusc.2020.147110

    Article  CAS  Google Scholar 

  67. P.K. Mishra, R. Malik, V.K. Tomer, N. Joshi, Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor, in Functional Nanomaterials. ed. by S. Thomas, N. Joshi, V. Tomer (Springer, Singapore, 2020), pp. 285–302

    Chapter  Google Scholar 

  68. E.M. Materón, C.M. Miyazaki, O. Carr, N. Joshi, P.H. Picciani, C.J. Dalmaschio, F. Davis, F.M. Shimizu, Magnetic nanoparticles in biomedical applications: a review. Appl. Surf. Sci. Adv. 6, 100163 (2021). https://doi.org/10.1016/j.apsadv.2021.100163

    Article  Google Scholar 

  69. S.W. Fan, A.K. Srivastava, V.P. Dravid, UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Surf. Sci. 95(14), 142106 (2009). https://doi.org/10.1063/1.3243458

    Article  CAS  Google Scholar 

  70. S. Mishra, C. Ghanshyam, N. Ram, R.P. Bajpai, R.K. Bedi, Detection mechanism of metal oxide gas sensor under UV radiation. Sens. Actuators B Chem. 97(2–3), 387–390 (2004). https://doi.org/10.1016/j.snb.2003.09.017

    Article  CAS  Google Scholar 

  71. P. Sundara Venkatesh, P. Dharmaraj, V. Purushothaman, V. Ramakrishnan, K. Jeganathan, Point defects assisted NH3 gas sensing properties in ZnO nanostructures. Sens. Actuators B: Chem. 212, 10–17 (2015). https://doi.org/10.1016/j.snb.2015.01.070

    Article  CAS  Google Scholar 

  72. P. Shankar, J.B.B. Rayappan, Racetrack effect on the dissimilar sensing response of ZnO thin film-an anisotropy of isotropy. ACS Appl. Mater. Interfaces 8(37), 24924–24932 (2016). https://doi.org/10.1021/acsami.6b05133

    Article  CAS  PubMed  Google Scholar 

  73. G.K. Mani, J.B.B. Rayappan, A highly selective and wide range ammonia sensor—Nanostructured ZnO: Co thin film. Mater. Sci. Eng. B 191, 41–50 (2015). https://doi.org/10.1016/j.mseb.2014.10.007

    Article  CAS  Google Scholar 

  74. G.M. Patel, V.R. Shah, G.J. Bhatt, P.T. Deota, Humidity nanosensors for smart manufacturing, in Nanosensors for Smart Manufacturing. ed. by S. Thomas, T.A. Nguyen, M. Ahmadi, A. Farmani, G. Yasin (Elsevier, Amsterdam, 2021), pp. 555–580

    Chapter  Google Scholar 

  75. J. Nie, Y. Wu, Q. Huang, N. Joshi, N. Li, X. Meng, S. Zheng, M. Zhang, B. Mi, L. Lin, Dew point measurement using a carbon-based capacitive sensor with active temperature control. ACS Appl. Mater. Interfaces 11(1), 1699–1705 (2018). https://doi.org/10.1021/acsami.8b18538

    Article  CAS  PubMed  Google Scholar 

  76. Y. Wu, Q. Huang, J. Nie, J. Liang, N. Joshi, T. Hayasaka, S. Zhao, M. Zhang, X. Wang, L. Lin, All-carbon based flexible humidity sensor. J. Nanosci. Nanotechnol. 19(8), 5310–5316 (2019). https://doi.org/10.1166/jnn.2019.16821

    Article  CAS  PubMed  Google Scholar 

  77. N. Ramgir, N. Datta, M. Kaur, S. Kailasaganapathi, A.K. Debnath, D.K. Aswal, S.K. Gupta, Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects. Colloids Surf. A Physicochem. Eng. Asp. 439, 101–116 (2013). https://doi.org/10.1016/j.colsurfa.2013.02.029

    Article  CAS  Google Scholar 

  78. X. Li, J.H. Cho, P. Kurup, Z. Gu, Novel sensor array based on doped tin oxide nanowires for organic vapor detection. Sens. Actuators B Chem. 162(1), 251–258 (2012). https://doi.org/10.1016/j.snb.2011.12.075

    Article  CAS  Google Scholar 

  79. J.P. Cheng, J. Wang, Q.Q. Li, H.G. Liu, Y. Li, A review of recent developments in tin dioxide composites for gas sensing application. J. Ind. Eng. Chem. 44, 1–22 (2016). https://doi.org/10.1016/j.jiec.2016.08.008

    Article  CAS  Google Scholar 

  80. D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuators B Chem. 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074

    Article  CAS  Google Scholar 

  81. A.A. Baharuddin, B.C. Ang, A.S.M.A. Haseeb, Y.C. Wong, Y.H. Wong, Advances in chemiresistive sensors for acetone gas detection. Mater. Sci. Semicond. Process 103, 104616 (2019). https://doi.org/10.1016/j.mssp.2019.104616

    Article  CAS  Google Scholar 

  82. F. Xu, H.P. Ho, Light-activated metal oxide gas sensors: a review. Micromachines 8(11), 333 (2017). https://doi.org/10.3390/mi8110333

    Article  PubMed Central  Google Scholar 

  83. N. Joshi, L.F. da Silva, F.M. Shimizu, V.R. Mastelaro, J.C. M’Peko, L. Lin, O.N. Oliveira, UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature. Microchim. Acta 186(7), 1–9 (2019). https://doi.org/10.1007/s00604-019-3532-4

    Article  CAS  Google Scholar 

  84. R. Malik, V.K. Tomer, N. Joshi, T. Dankwort, L. Lin, L. Kienle, Au–TiO2-loaded cubic g-C3N4 nanohybrids for photocatalytic and volatile organic amine sensing applications. ACS Appl. Mater. Interfaces 10(40), 34087–34097 (2018). https://doi.org/10.1021/acsami.8b08091

    Article  CAS  PubMed  Google Scholar 

  85. Y. Li, D. Deng, N. Chen, X. **ng, X. Liu, X. **ao, Y. Wang, Pd nanoparticles composited SnO2 microspheres as sensing materials for gas sensors with enhanced hydrogen response performances. J. Alloys Compd. 710, 216–224 (2017). https://doi.org/10.1016/j.jallcom.2017.03.274

    Article  CAS  Google Scholar 

  86. Q. Ren, Y.Q. Cao, D. Arulraj, C. Liu, D. Wu, W.M. Li, A.D. Li, Resistive-type hydrogen sensors based on zinc oxide nanostructures. J. Electrochem. Soc. 167(6), 067528 (2020). https://doi.org/10.1149/1945-7111/ab7e23

    Article  CAS  Google Scholar 

  87. N. Joshi, L.F. da Silva, H. Jadhav, J.C. M’Peko, B.B.M. Torres, K. Aguir, V.R. Mastelaro, O.N. Oliveira, One-step approach for preparing ozone gas sensors based on hierarchical NiCo2O4 structures. RSC Adv. 6(95), 92655–92662 (2016). https://doi.org/10.1039/C6RA18384K

    Article  CAS  Google Scholar 

  88. N. Joshi, L.F. da Silva, H.S. Jadhav, F.M. Shimizu, P.H. Suman, J.C. M’Peko, M.O. Orlandi, J.G. Seo, V.R. Mastelaro, O.N. Oliveira Jr., Yolk-shelled ZnCo2O4 microspheres: surface properties and gas sensing application. Sens. Actuators B Chem. 257, 906–915 (2018). https://doi.org/10.1016/j.snb.2017.11.041

    Article  CAS  Google Scholar 

  89. N. Joshi, F.M. Shimizu, I.T. Awan, J.C. M'Peko, V.R. Mastelaro, O.N. Oliveira, L.F. da Silva, Ozone sensing properties of nickel phthalocyanine: ZnO nanorod heterostructures, in 2016 IEEE Sensors pp. 1–3 (2016).: https://doi.org/10.1109/ICSENS.2016.7808407

  90. Z. Wang, L. Zhu, S. Sun, J. Wang, W. Yan, One-dimensional nanomaterials in resistive gas sensor: from material design to application. Chemosensors 9(8), 198 (2021). https://doi.org/10.3390/chemosensors9080198

    Article  CAS  Google Scholar 

  91. N.J. Joshi, M.L. Braunger, F.M. Shimizu, A. Riul Jr., O.N. de Oliveira Jr, Insights into nano-heterostructured materials for gas sensing: a review. Multifunct. Mater. 4(3), 032002 (2021). https://doi.org/10.1088/2399-7532/ac1732

    Article  CAS  Google Scholar 

  92. A. Kumar, N. Joshi, S. Samanta, A. Singh, A.K. Debnath, A.K. Chauhan, S.K. Gupta, Room temperature detection of H2S by flexible gold–cobalt phthalocyanine heterojunction thin films. Sens. Actuators B Chem. 206, 653–662 (2015). https://doi.org/10.1016/j.snb.2014.09.074

    Article  CAS  Google Scholar 

  93. P. Karnati, S. Akbar, P.A. Morris, Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: a review. Sens. Actuators B Chem. 295, 127–143 (2019). https://doi.org/10.1016/j.snb.2019.05.049

    Article  CAS  Google Scholar 

  94. H. Ogawa, M. Nishikawa, A. Abe, Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys. 53(6), 4448–4455 (1982). https://doi.org/10.1063/1.331230

    Article  CAS  Google Scholar 

  95. S.M. Sze, Y. Li, K.K. Ng, Physics of Semiconductor Devices, 4th edn. (Wiley, Hoboken, 2021), p. 835

    Google Scholar 

  96. M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2(1), 36–50 (2006). https://doi.org/10.1002/smll.200500261

    Article  CAS  PubMed  Google Scholar 

  97. V.K. Tomer, R. Malik, N. Joshi, A special section on applications of 2D/3D materials in sensing and photocatalysis. J. Nanosci. Nanotechnol. 19(8), 5052–5053 (2019). https://doi.org/10.1166/jnn.2019.16841

    Article  CAS  PubMed  Google Scholar 

  98. A. Mekki, N. Joshi, A. Singh, Z. Salmi, P. Jha, P. Decorse, S. Lau-Truong, R. Mahmoud, M.M. Chehimi, D.K. Aswal, S.K. Gupta, H2S sensing using in situ photo-polymerized polyaniline–silver nanocomposite films on flexible substrates. Org. Electron. 15(1), 71–81 (2014). https://doi.org/10.1016/j.orgel.2013.10.012

    Article  CAS  Google Scholar 

  99. A. Singh, A. Kumar, A. Kumar, S. Samanta, N. Joshi, V. Balouria, A.K. Debnath, R. Prasad, Z. Salmi, M.M. Chehimi, D.K. Aswal, Bending stress induced improved chemiresistive gas sensing characteristics of flexible cobalt-phthalocyanine thin films. Appl. Phys. Lett. 102(13), 132107 (2013). https://doi.org/10.1063/1.4800446

    Article  CAS  Google Scholar 

  100. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B Chem. 160(1), 580–591 (2011). https://doi.org/10.1016/j.snb.2011.08.032

    Article  CAS  Google Scholar 

  101. S.J. Patil, A.V. Patil, C.G. Dighavkar, K.S. Thakare, R.Y. Borase, S.J. Nandre, N.G. Deshpande, R.R. Ahire, Semiconductor metal oxide compounds based gas sensors: a literature review. Front. Mater. Sci. 9(1), 14–37 (2015). https://doi.org/10.1007/s11706-015-0279-7

    Article  Google Scholar 

  102. A. Mirzaei, J.H. Lee, S.M. Majhi, M. Weber, M. Bechelany, H.W. Kim, S.S. Kim, Resistive gas sensors based on metal-oxide nanowires. J. Appl. Phys. 126(24), 241102 (2019). https://doi.org/10.1063/1.5118805

    Article  CAS  Google Scholar 

  103. A. Gurlo, N. Bârsan, U. Weimar, Gas sensors based on semiconducting metal oxides, in Metal Oxides: Chemistry and Applications. ed. by J.L.G. Fierro (CRC Press, Boca Raton, 2005), pp. 683–738

    Chapter  Google Scholar 

  104. A.T. Güntner, N.J. Pineau, P. Mochalski, H. Wiesenhofer, A. Agapiou, C.A. Mayhew, S.E. Pratsinis, Sniffing entrapped humans with sensor arrays. Anal. Chem. 90(8), 4940–4945 (2018). https://doi.org/10.1021/acs.analchem.8b00237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. D. Wei, W. Jiang, H. Gao, X. Chuai, F. Liu, F. Liu, P. Sun, X. Liang, Y. Gao, X. Yan, G. Lu, Facile synthesis of La-doped In2O3 hollow microspheres and enhanced hydrogen sulfide sensing characteristics. Sens. Actuators B Chem. 276, 413–420 (2018). https://doi.org/10.1016/j.snb.2018.08.130

    Article  CAS  Google Scholar 

  106. Y. Xu, L. Zheng, C. Yang, X. Liu, J. Zhang, Highly sensitive and selective electronic sensor based on Co catalyzed SnO2 nanospheres for acetone detection. Sens. Actuators B Chem. 304, 127237 (2020). https://doi.org/10.1016/j.snb.2019.127237

    Article  CAS  Google Scholar 

  107. O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park, H. Heinrich, A rapid hydrothermal synthesis of rutile SnO2 nanowires. Mater. Sci. Eng. B 157(1–3), 101–104 (2009). https://doi.org/10.1016/j.mseb.2008.12.035

    Article  CAS  Google Scholar 

  108. R.A.B. John, A.R. Kumar, A review on resistive-based gas sensors for the detection of volatile organic compounds using metal-oxide nanostructures. Inorg. Chem. Commun. 13, 108893 (2021). https://doi.org/10.1016/j.inoche.2021.108893

    Article  CAS  Google Scholar 

  109. S. Sagadevan, M. Johan, R. Bin, F.A. Aziz, H.L. Hsu, R. Selvin, H.H. Hegazy, A. Umar, H. Algarni, S.L. Roselin, Influence of Mn Do** on the properties of tin oxide nanoparticles prepared by co-precipitation method. J. Nanoelectron. Optoelectron. 14(4), 583–592 (2019). https://doi.org/10.1166/jno.2019.2588

    Article  CAS  Google Scholar 

  110. D. Yu, D. Wang, W. Yu, Y. Qian, Synthesis of ITO nanowires and nanorods with corundum structure by a co-precipitation-anneal method. Mater. Lett. 58(1–2), 84–87 (2004). https://doi.org/10.1016/S0167-577X(03)00420-8

    Article  CAS  Google Scholar 

  111. Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal synthesis of nanomaterials. J. Nanomater. 2020, 1–3 (2020). https://doi.org/10.1155/2020/8917013

    Article  Google Scholar 

  112. M. Shandilya, R. Rai, J. Singh, Hydrothermal technology for smart materials. Adv. Appl. Ceram. 115(6), 354–376 (2016). https://doi.org/10.1080/17436753.2016.1157131

    Article  CAS  Google Scholar 

  113. H. Ghobarkar, O. Schäf, U. Guth, The use of the high pressure hydrothermal method for tailored synthesis of zeolites without structure directing agents. Instance: synthesis of natural zeolites with 5–1 building units. Int. J. High Pressure Res. 20(1–6), 45–53 (2001). https://doi.org/10.1080/08957950108206151

    Article  Google Scholar 

  114. O. Schäf, H. Ghobarkar, P. Knauth, Hydrothermal synthesis of nanomaterials, in Nanostructured Materials. Electronic Materials: Science & Technology. ed. by P. Knauth, J. Schoonman (Springer, Boston, 2004), pp. 23–41

    Chapter  Google Scholar 

  115. M.S. Whittingham, J.D. Guo, R. Chen, T. Chirayil, G. Janauer, P. Zavalij, The hydrothermal synthesis of new oxide materials. Solid State Ion. 75, 257–268 (1995). https://doi.org/10.1016/0167-2738(94)00220-M

    Article  CAS  Google Scholar 

  116. S. Gupta, M. Tripathi, A review on the synthesis of TiO2 nanoparticles by solution route. Open Chem. 10(2), 279–294 (2012). https://doi.org/10.2478/s11532-011-0155-y

    Article  CAS  Google Scholar 

  117. M. Parashar, V.K. Shukla, R. Singh, Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron. 31(5), 3729–3749 (2020). https://doi.org/10.1007/s10854-020-02994-8

    Article  CAS  Google Scholar 

  118. G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.M. Han, C. Mahapatra, H.W. Kim, J.C. Knowles, Sol–gel based materials for biomedical applications. Prog. Mater. Sci. 77, 1–79 (2016). https://doi.org/10.1016/j.pmatsci.2015.12.001

    Article  CAS  Google Scholar 

  119. A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, Methods for synthesis of nanoparticles and fabrication of nanocomposites, in Synthesis of Inorganic Nanomaterials. ed. by S.M. Bhagyaraj, O.S. Oluwafemi, N.K. Kalarikkal, S. Thomas (Woodhead Publishing, Sawston, 2018), pp. 121–139

    Chapter  Google Scholar 

  120. H.W. Wang, C.F. Ting, M.K. Hung, C.H. Chiou, Y.L. Liu, Z. Liu, K.R. Ratinac, S.P. Ringer, Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium–tin-oxide nanowire arrays and ITO/TiO2 core–shell nanowire arrays by electrophoretic deposition. Nanotechnology 20(5), 055601 (2009). https://doi.org/10.1088/0957-4484/20/5/055601

    Article  CAS  PubMed  Google Scholar 

  121. X. Shi, W. Zhou, D. Ma, Q. Ma, D. Bridges, Y. Ma, A. Hu, Electrospinning of nanofibers and their applications for energy devices. J. Nanomater. 16(1), 122 (2015). https://doi.org/10.1155/2015/140716

    Article  CAS  Google Scholar 

  122. J. Wu, J.L. Coffer, Strongly emissive erbium-doped tin oxide nanofibers derived from sol gel/electrospinning methods. J. Phys. Chem. C 111(44), 16088–16091 (2007). https://doi.org/10.1021/jp076338y

    Article  CAS  Google Scholar 

  123. P.S. Archana, R. Jose, C. Vijila, S. Ramakrishna, Improved electron diffusion coefficient in electrospun TiO2 nanowires. J. Phys. Chem. C 113(52), 21538–21542 (2009). https://doi.org/10.1021/jp908238q

    Article  CAS  Google Scholar 

  124. Y. Feng, W. Hou, X. Zhang, P. Lv, Y. Li, W. Feng, Highly sensitive reversible light-driven switches using electrospun porous aluminum-doped zinc oxide nanofibers. J. Phys. Chem. C 115(10), 3956–3961 (2011). https://doi.org/10.1021/jp1117745

    Article  CAS  Google Scholar 

  125. H.S. Shim, J.W. Kim, Y.E. Sung, W.B. Kim, Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Sol. Energy Mater. Sol. Cells 93(12), 2062–2068 (2009). https://doi.org/10.1016/j.solmat.2009.02.008

    Article  CAS  Google Scholar 

  126. R. Li, S. Chen, Z. Lou, L. Li, T. Huang, Y. Song, D. Chen, G. Shen, Fabrication of porous SnO2 nanowires gas sensors with enhanced sensitivity. Sens. Actuators B Chem. 252, 79–85 (2017). https://doi.org/10.1016/j.snb.2017.05.161

    Article  CAS  Google Scholar 

  127. S. Coskun, B. Aksoy, H.E. Unalan, Polyol synthesis of silver nanowires: an extensive parametric study. Cryst. Growth Des. 11(11), 4963–4969 (2011). https://doi.org/10.1021/cg200874g

    Article  CAS  Google Scholar 

  128. K.S. Shankar, A.K. Raychaudhuri, Fabrication of nanowires of multicomponent oxides: review of recent advances. Mater. Sci. Eng. C 25(5–8), 738–751 (2005). https://doi.org/10.1016/j.msec.2005.06.054

    Article  CAS  Google Scholar 

  129. F. Fiévet, R. Brayner, The polyol process, in Nanomaterials: A Danger or a Promise?. ed. by R. Brayner, F. Fiévet, T. Coradin (Springer, London, 2013), pp. 1–25

    Google Scholar 

  130. X. Jiang, Y. Wang, T. Herricks, Y. **a, Ethylene glycol-mediated synthesis of metal oxide nanowires. J. Mater. Chem. 14(4), 695–703 (2004). https://doi.org/10.1039/B313938G

    Article  CAS  Google Scholar 

  131. Y.M. Manawi, A. Samara, T. Al-Ansari, M.A. Atieh, A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials 11(5), 822 (2015). https://doi.org/10.3390/ma11050822

    Article  CAS  Google Scholar 

  132. P.M. Martin, Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology, 3rd edn. (Elsevier, Amsterdam, 2009), p. 314

    Google Scholar 

  133. J.H. Park, T.S. Sudarshan, Chemical Vapor Deposition, 2nd edn. (ASM International, Materials Park, 2001), p. 1

    Google Scholar 

  134. S. Kleckley, H. Wang, I. Oladeji, L. Chow, T.K. Daly, P.R. Buseck, T. Solouki, A. Marshall, Fullerenes and polymers produced by the chemical vapor deposition method, in Synthesis and Characterization of Advanced Materials. ed. by M.A. Serio, D.M. Gruen, R. Malhotra (ACS Publication, Washington DC, 1998), pp. 51–60

    Google Scholar 

  135. W. Jeong, H.C. Kang, Thermal chemical vapor deposition of tin oxide nanowires in a hydrogen reduction atmosphere. Ceram. Int. 44(8), 9801–9808 (2018). https://doi.org/10.1016/j.ceramint.2018.02.217

    Article  CAS  Google Scholar 

  136. R. Ilangovan, V. Subha, R.E. Ravindran, S. Kirubanandan, S. Renganathan, Nanomaterials: Synthesis, Physicochemical Characterization, and Biopharmaceutical Applications (Elsevier, Amsterdam, 2021), pp. 33–70

    Google Scholar 

  137. L. **a, Importance of nanostructured surfaces, in Bioceramics. ed. by A. Osaka, R. Narayan (Elsevier, Amsterdam, 2021), pp. 5–24

    Chapter  Google Scholar 

  138. M.S. Rafique, M. Rafique, M.B. Tahir, S. Hajra, T. Nawaz, F. Shafiq, Synthesis methods of nanostructures, in Nanotechnology and Photocatalysis for Environmental Applications. ed. by M.B. Tahir, M. Rafique, M.S. Rafique (Elsevier, Amsterdam, 2020), pp. 45–56

    Chapter  Google Scholar 

  139. E. Bahadori, G. Ramis, I. Rossetti, Matching nanotechnologies with reactor scale-up and industrial exploitation, in Nanomaterials for the Detection and Removal of Wastewater Pollutants. ed. by B. Bonelli, F.S. Freyria, I. Rossetti, R. Sethi (Elsevier, Amsterdam, 2020), pp. 407–442

    Chapter  Google Scholar 

  140. O. Sisman, N. Kaur, G. Sberveglieri, E. Núñez-Carmona, V. Sberveglieri, E. Comini, UV-enhanced humidity sensing of chitosan–SnO2 hybrid nanowires. Nanomaterials 10(2), 329 (2020). https://doi.org/10.3390/nano10020329

    Article  CAS  PubMed Central  Google Scholar 

  141. U.S. Mohanty, Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J. Appl. Electrochem. 41(3), 257–270 (2011). https://doi.org/10.1007/s10800-010-0234-3

    Article  CAS  Google Scholar 

  142. L. Santos, J.P. Neto, A. Crespo, P. Baião, P. Barquinha, L. Pereira, R. Martins, E. Fortunato, Electrodeposition of WO3 nanoparticles for sensing applications, in Electroplating of Nanostructures. ed. by M. Aliofkhazraei (IntechOpen, Vienna, 2015), pp. 1–22

    Google Scholar 

  143. A. Karatutlu, A. Barhoum, A. Sapelkin, Liquid-phase synthesis of nanoparticles and nanostructured materials, in Emerging Applications of Nanoparticles and Architecture Nanostructures. ed. by A. Barhoum, A.S. Hamdy Makhlouf (Elsevier, Amsterdam, 2018), pp. 1–28

    Google Scholar 

  144. A. Sharma, A. Khosla, S. Arya, Synthesis of SnO2 nanowires as a reusable and flexible electrode for electrochemical detection of riboflavin. Microchem. J. 156, 104858 (2020). https://doi.org/10.1016/j.microc.2020.104858

    Article  CAS  Google Scholar 

  145. M.S. Choi, H.G. Na, J.H. Bang, A. Mirzaei, S. Han, H.Y. Lee, S.S. Kim, H.W. Kim, C. **, SnO2 nanowires decorated by insulating amorphous carbon layers for improved room-temperature NO2 sensing. Sens. Actuators B Chem. 326, 128801 (2021). https://doi.org/10.1016/j.snb.2020.128801

    Article  CAS  Google Scholar 

  146. S. Park, S. An, Y. Mun, C. Lee, UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. ACS Appl. Mater. Interfaces 5(10), 4285–4292 (2013). https://doi.org/10.1021/am400500a

    Article  CAS  PubMed  Google Scholar 

  147. J.D. Prades, R. Jiménez-Díaz, F. Hernandez-Ramirez, S. Barth, A. Cirera, A. Romano-Rodriguez, S. Mathur, J.R. Morante, Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sens. Actuators B Chem. 140(2), 337–341 (2009). https://doi.org/10.1016/j.snb.2009.04.070

    Article  CAS  Google Scholar 

  148. Y.J. Kwon, S.Y. Kang, P. Wu, Y. Peng, S.S. Kim, H.W. Kim, Selective improvement of NO2 gas sensing behavior in SnO2 nanowires by ion-beam irradiation. ACS Appl. Mater. Interfaces 8(21), 13646–13658 (2016). https://doi.org/10.1021/acsami.6b01619

    Article  CAS  PubMed  Google Scholar 

  149. J.H. Park, M.S. Cho, D. Lim, J.G. Park, SnO2 nanowire gas sensor operating at room temperature. J. Nanosci. Nanotechnol. 14(10), 8038–8042 (2014). https://doi.org/10.1166/jnn.2014.9403

    Article  CAS  PubMed  Google Scholar 

  150. N.S. Ramgir, I.S. Mulla, K.P. Vijayamohanan, A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires. Sens. Actuators B Chem. 107(2), 708–715 (2005). https://doi.org/10.1016/j.snb.2004.12.073

    Article  CAS  Google Scholar 

  151. N. Ramgir, S. Sen, M. Kaur, S.K. Mishra, V. Rikka, R. Choukikar, K. Muthe, Investigation of SnO2 nanowire based gas sensors. Asian J. Phys. 19, 273–278 (2010)

    Google Scholar 

  152. Z. Song, Z. Wei, B. Wang, Z. Luo, S. Xu, W. Zhang, H. Yu, M. Li, Z. Huang, J. Zang, H. Liu, Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem. Mater. 28(4), 1205–1212 (2016). https://doi.org/10.1021/acs.chemmater.5b04850

    Article  CAS  Google Scholar 

  153. T. Van Dang, N. Duc-Hoa, N. Van Duy, N. Van Hieu, Chlorine gas sensing performance of on-chip grown ZnO, WO3, and SnO2 nanowire sensors. ACS Appl. Mater. Interfaces 8(7), 4828–4837 (2016). https://doi.org/10.1021/acsami.5b08638

    Article  CAS  Google Scholar 

  154. S. Sen, P. Kanitkar, A. Sharma, K.P. Muthe, A. Rath, S.K. Deshpande, J.V. Yakhmi, Growth of SnO2/W18O49 nanowire hierarchical heterostructure and their application as chemical sensor. Sens. Actuators B Chem. 147(2), 453–460 (2010). https://doi.org/10.1016/j.snb.2010.04.016

    Article  CAS  Google Scholar 

  155. Y. Wang, X. Jiang, Y. **a, A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc. 125(52), 16176–16177 (2003). https://doi.org/10.1021/ja037743f

    Article  CAS  PubMed  Google Scholar 

  156. E.P. Stuckert, C.J. Miller, E.R. Fisher, The effect of Ar/O2 and H2O plasma treatment of SnO2 nanoparticles and nanowires on carbon monoxide and benzene detection. ACS Appl. Mater. Interfaces 9(18), 15733–15743 (2017). https://doi.org/10.1016/j.snb.2014.11.049

    Article  CAS  PubMed  Google Scholar 

  157. Y. Shen, T. Yamazaki, Z. Liu, D. Meng, T. Kikuta, N. Nakatani, M. Saito, M. Mori, Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires. Sens. Actuators B Chem. 135(2), 524–529 (2009). https://doi.org/10.1016/j.snb.2008.09.010

    Article  CAS  Google Scholar 

  158. Y. Shen, D. Wei, M. Li, W. Liu, S. Gao, C. Han, B. Cui, Microstructure and room-temperature H2 sensing properties of undoped and impurity-doped SnO2 nanowires. Chem. Lett. 42(5), 492–494 (2013). https://doi.org/10.1246/cl.130026

    Article  CAS  Google Scholar 

  159. S. Deshpande, A. Karakoti, G. Londe, H.J. Cho, S. Seal, Room temperature hydrogen detection using 1-D nanostructured tin oxide sensor. J. Nanosci. Nanotechnol. 7(9), 3354–3357 (2007). https://doi.org/10.1166/jnn.2007.872

    Article  CAS  PubMed  Google Scholar 

  160. Y.J. Choi, I.S. Hwang, J.G. Park, K.J. Choi, J.H. Park, J.H. Lee, Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 19(9), 095508 (2008). https://doi.org/10.1088/0957-4484/19/9/095508

    Article  CAS  PubMed  Google Scholar 

  161. M. Tonezzer, N.V. Hieu, Size-dependent response of single-nanowire gas sensors. Sens. Actuators B Chem. 163(1), 146–152 (2012). https://doi.org/10.1016/j.snb.2012.01.022

    Article  CAS  Google Scholar 

  162. E. Brunet, T. Maier, G.C. Mutinati, S. Steinhauer, A. Köck, C. Gspan, W. Grogger, Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors. Sens. Actuators B Chem. 165(1), 110–118 (2012). https://doi.org/10.1016/j.snb.2012.02.025

    Article  CAS  Google Scholar 

  163. H.S. Hong, T. Dai-Lam, T. Trung, N. Van Hieu, Selective detection of carbon dioxide using LaOCl-functionalized SnO2 nanowires for air-quality monitoring. Talanta 88, 152–159 (2012). https://doi.org/10.1016/j.talanta.2011.10.024

    Article  CAS  PubMed  Google Scholar 

  164. X. Zhong, Y. Shen, S. Zhao, X. Chen, C. Han, D. Wei, P. Fang, D. Meng, SO2 sensing properties of SnO2 nanowires grown on a novel diatomite-based porous substrate. Ceram. Int. 45(2), 2556–2565 (2019). https://doi.org/10.1016/j.ceramint.2018.10.186

    Article  CAS  Google Scholar 

  165. G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, Synthesis and characterization of semiconducting nanowires for gas sensing. Sens. Actuators B Chem. 121(1), 208–213 (2007). https://doi.org/10.1016/j.snb.2006.09.049

    Article  CAS  Google Scholar 

  166. I.S. Hwang, J.K. Choi, S.J. Kim, K.Y. Dong, J.H. Kwon, B.K. Ju, J.H. Lee, Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO. Sens. Actuators B Chem. 142(1), 105–110 (2009). https://doi.org/10.1016/j.snb.2009.07.052

    Article  CAS  Google Scholar 

  167. N. Van Hieu, Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures. Sens. Actuators B Chem. 150(1), 112–119 (2010). https://doi.org/10.1016/j.snb.2010.07.033

    Article  CAS  Google Scholar 

  168. D.C. Meier, S. Semancik, B. Button, E. Strelcov, A. Kolmakov, Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms. Appl. Phys. Lett. 91(6), 063118 (2007). https://doi.org/10.1063/1.2768861

    Article  CAS  Google Scholar 

  169. Z. Yuan, J. Zhang, F. Meng, Y. Li, R. Li, Y. Chang, J. Zhao, E. Han, S. Wang, Highly sensitive ammonia sensors based on Ag-decorated WO3 nanorods. IEEE Trans. Nanotechnol. 17(6), 1252–1258 (2018). https://doi.org/10.1109/TNANO.2018.2871675

    Article  CAS  Google Scholar 

  170. N.D. Hoa, P. Van Tong, N. Van Duy, T.D. Dao, H.V. Chung, T. Nagao, N. Van Hieu, Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance. J. Hazard. Mater. 265, 124–132 (2014). https://doi.org/10.1016/j.jhazmat.2013.11.054

    Article  CAS  PubMed  Google Scholar 

  171. K. Shehzad, N.A. Shah, M. Amin, M. Abbas, W.A. Syed, Synthesis of SnO2 nanowires forCO, CH4 and CH3OH gases sensing. Int. J. Distrib. Sens. Netw. 14(8), 1550147718790750 (2018). https://doi.org/10.1177/2F1550147718790750

    Article  Google Scholar 

  172. N. Van Duy, N.D. Hoa, N. Van Hieu, Effective hydrogen gas nanosensor based on bead-like nanowires of platinum-decorated tin oxide. Sens. Actuators B Chem. 173, 211–217 (2012). https://doi.org/10.1016/j.snb.2012.06.079

    Article  CAS  Google Scholar 

  173. A. Johari, V. Rana, M.C. Bhatnagar, Synthesis, characterization and ethanol sensing properties of tin oxide nanostructures. Nanomater. Nanotechnol. 1, 18 (2011). https://doi.org/10.5772/2F50960

    Article  Google Scholar 

  174. X.Y. Xue, Y.J. Chen, Y.G. Liu, S.L. Shi, Y.G. Wang, T.H. Wang, Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires. Appl. Phys. Lett. 88(20), 201907 (2006). https://doi.org/10.1063/1.2203941

    Article  CAS  Google Scholar 

  175. I. Castro-Hurtado, J. Herrán, G.G. Mandayo, E. Castaño, SnO2-nanowires grown by catalytic oxidation of tin sputtered thin films for formaldehyde detection. Thin Solid Films 520(14), 4792–4796 (2012). https://doi.org/10.1016/j.tsf.2011.10.140

    Article  CAS  Google Scholar 

  176. L. Wang, J. Li, Y. Wang, K. Yu, X. Tang, Y. Zhang, S. Wang, C. Wei, Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances. Sci. Rep. 6(1), 1–12 (2016). https://doi.org/10.1038/srep35079

    Article  CAS  Google Scholar 

  177. M. Tonezzer, J.H. Kim, J.H. Lee, S. Iannotta, S.S. Kim, Predictive gas sensor based on thermal fingerprints from Pt-SnO2 nanowires. Sens. Actuators B Chem. 281, 670–678 (2019). https://doi.org/10.1016/j.snb.2018.10.102

    Article  CAS  Google Scholar 

  178. T. Li, W. Zeng, Z. Wang, Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: a review. Sens. Actuators B Chem. 221, 1570–1585 (2015). https://doi.org/10.1016/j.snb.2015.08.003

    Article  CAS  Google Scholar 

  179. Y. Chen, Y. Cao, Ultrasensitive and low detection limit of acetone gas sensor based on ZnO/SnO2 thick films. RSC Adv. 10(59), 35958–35965 (2020). https://doi.org/10.1039/D0RA06406H

    Article  CAS  Google Scholar 

  180. M. Poloju, N. Jayababu, M.R. Reddy, Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater. Sci. Eng: B 227, 61–67 (2018). https://doi.org/10.1016/j.mseb.2017.10.012

    Article  CAS  Google Scholar 

  181. Z.U. Abideen, J.H. Kim, J.H. Lee, J.Y. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Electrospun metal oxide composite nanofibers gas sensors: a review. J. Korean Ceram. Soc. 54(5), 366–379 (2017). https://doi.org/10.4191/kcers.2017.54.5.12

    Article  CAS  Google Scholar 

  182. Y. Hamedani, P. Macha, T.J. Bunning, R.R. Naik, M.C. Vasudev, Plasma-Enhanced Chemical Vapor Deposition: Where we are and the Outlook for the Future (InTech, Vienna, 2016), pp. 247–280

    Google Scholar 

  183. D. Tonelli, E. Scavetta, I.I. Gualand, Electrochemical deposition of nanomaterials for electrochemical sensing. Sensors 19(5), 1186 (2019). https://doi.org/10.3390/s19051186

    Article  CAS  PubMed Central  Google Scholar 

  184. D. Tyagi, H. Wang, W. Huang, L. Hu, Y. Tang, Z. Guo, Y. Tang, Z. Guo, H. Zhang, Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12(6), 3535–3559 (2010). https://doi.org/10.1039/C9NR10178K

    Article  Google Scholar 

  185. D. Nunes, A. Pimentel, A. Gonçalves, S. Pereira, R. Branquinho, P. Barquinha, E. Fortunato, R. Martins, Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 34(4), 043001 (2019). https://doi.org/10.1088/1361-6641/ab011e

    Article  CAS  Google Scholar 

  186. Y. Jian, W. Hu, Z. Zhao, P. Cheng, H. Haick, M. Yao, W. Wu, Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 12(1), 1–43 (2020). https://doi.org/10.1007/s40820-020-0407-5

    Article  CAS  Google Scholar 

  187. N.H. Hanh, L. Van Duy, C.M. Hung, N. Van Duy, Y.W. Heo, N. Van Hieu, N.D. Hoa, VOC gas sensor based on hollow cubic assembled nanocrystal Zn2SnO4 for breath analysis. Sens. Actuators A Phys. 302, 111834 (2020). https://doi.org/10.1016/j.sna.2020.111834

    Article  CAS  Google Scholar 

  188. M.V. Nikolic, V. Milovanovic, Z.Z. Vasiljevic, Z. Stamenkovic, Semiconductor gas sensors: materials, technology, design, and application. Sensors 20(22), 6694 (2020). https://doi.org/10.3390/s20226694

    Article  CAS  PubMed Central  Google Scholar 

  189. D. Kwak, Y. Lei, R. Maric, Ammonia gas sensors: a comprehensive review. Talanta 204, 713–730 (2019). https://doi.org/10.1016/j.talanta.2019.06.034

    Article  CAS  PubMed  Google Scholar 

  190. J. Dai, O. Ogbeide, N. Macadam, Q. Sun, W. Yu, Y. Li, B.L. Su, T. Hasan, W. Huang, Printed gas sensors. Chem. Soc. Rev. 49(6), 1756–1789 (2020). https://doi.org/10.1039/C9CS00459A

    Article  CAS  PubMed  Google Scholar 

  191. G. Patel, V. Pillai, P. Bhatt, S. Mohammad, Application of nanosensors in the food industry, in Nanosensors for Smart Cities. ed. by B. Han, V.K. Tomer, T.A. Nguyen, A. Farmani, P.K. Singh (Elsevier, Amsterdam, 2020), pp. 355–368

    Chapter  Google Scholar 

  192. G. Patel, V. Pillai, M. Vora, Liquid phase exfoliation of two-dimensional materials for sensors and photocatalysis: a review. J. Nanosci. Nanotechnol. 19(8), 5054–5073 (2019). https://doi.org/10.1166/jnn.2019.16933

    Article  CAS  PubMed  Google Scholar 

  193. L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuators Phys. 267, 242–261 (2017). https://doi.org/10.1016/j.sna.2017.10.02

    Article  CAS  Google Scholar 

  194. V.S. Bhati, M. Hojamberdiev, M. Kumar, Enhanced sensing performance of ZnO nanostructures-based gas sensors: a review. Energy Rep. 6, 46–62 (2020). https://doi.org/10.1016/j.egyr.2019.08.070

    Article  Google Scholar 

  195. L. Sui, T. Yu, D. Zhao, X. Cheng, X. Zhang, P. Wang, Y. Xu, S. Gao, H. Zhao, Y. Gao, L. Huo, In situ deposited hierarchical CuO/NiO nanowall arrays film sensor with enhanced gas sensing performance to H2S. J. Hazard. Mater. 385, 121570 (2020). https://doi.org/10.1016/j.jhazmat.2019.121570

    Article  CAS  PubMed  Google Scholar 

  196. P.H. Phuoc, C.M. Hung, N. Van Toan, N. Van Duy, N.D. Hoa, N. Van Hieu, One-step fabrication of SnO2 porous nanofiber gas sensors for sub-ppm H2S detection. Sens. Actuators A Phys. 303, 111722 (2020). https://doi.org/10.1016/j.sna.2019.111722

    Article  CAS  Google Scholar 

  197. P. Patnaik, Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd edn. (Wiley, New Jersey, 2007), p. 15

    Book  Google Scholar 

  198. Z. Zhu, R.J. Wu, The degradation of formaldehyde using a Pt@ TiO2 nanoparticles in presence of visible light irradiation at room temperature. J. Taiwan Inst. Chem. Eng. 50, 276–281 (2015). https://doi.org/10.1016/j.jtice.2014.12.022

    Article  CAS  Google Scholar 

  199. I. Castro-Hurtado, G.G. Mandayo, E. Castaño, Conductometric formaldehyde gas sensors. A review: from conventional films to nanostructured materials. Thin Solid Films 548, 665–676 (2013). https://doi.org/10.1016/j.tsf.2013.04.083

    Article  CAS  Google Scholar 

  200. R. Ab Kadir, R.A. Rani, A.S. Zoolfakar, J.Z. Ou, M. Shafiei, W. Wlodarski, K. Kalantar-zadeh, Nb2O5 Schottky based ethanol vapour sensors: effect of metallic catalysts. Sens. Actuators B Chem. 202, 74–82 (2014). https://doi.org/10.1016/j.snb.2014.04.083

    Article  CAS  Google Scholar 

  201. S.W. Lee, W. Lee, Y. Hong, G. Lee, D.S. Yoon, Recent advances in carbon material-based NO2 gas sensors. Sens. Actuators B Chem. 255, 1788–1804 (2018). https://doi.org/10.1016/j.snb.2017.08.203

    Article  CAS  Google Scholar 

  202. D. Schwela, Air pollution and health in urban areas. Rev. Environ. Health 15(1–2), 13–42 (2000). https://doi.org/10.1515/REVEH.2000.15.1-2.13

    Article  CAS  PubMed  Google Scholar 

  203. F.E. Annanouch, Z. Haddi, S. Vallejos, P. Umek, P. Guttmann, C. Bittencourt, E. Llobet, Aerosol-assisted CVD-grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity-resilient detection of H2S. ACS Appl. Mater. Interfaces 7(12), 6842–6851 (2015). https://doi.org/10.1021/acsami.5b00411

    Article  CAS  PubMed  Google Scholar 

  204. K. Tian, X.X. Wang, Z.Y. Yu, H.Y. Li, X. Guo, Hierarchical and hollow Fe2O3 nanoboxes derived from metal–organic frameworks with excellent sensitivity to H2S. ACS Appl. Mater. Interfaces 9(35), 29669–29676 (2017). https://doi.org/10.1021/acsami.7b07069

    Article  CAS  PubMed  Google Scholar 

  205. M. Yang, X. Zhang, X. Cheng, Y. Xu, S. Gao, H. Zhao, L. Huo, Hierarchical NiO cube/nitrogen-doped reduced graphene oxide composite with enhanced H2S sensing properties at low temperature. ACS Appl. Mater. Interfaces 9(31), 26293–26303 (2017). https://doi.org/10.1021/acsami.7b04969

    Article  CAS  PubMed  Google Scholar 

  206. B. Timmer, W. Olthuis, A. Van Den Berg, Ammonia sensors and their applications: a review. Sens. Actuators B Chem. 107(2), 666–677 (2005). https://doi.org/10.1016/j.snb.2004.11.054

    Article  CAS  Google Scholar 

  207. The National Institute for Occupational Safety and Health (NIOSH), Preventing carbon monoxide poisoning from small gasoline-powered engines and tools, http://www.cdc.gov/niosh/docs/96-118/default.html. Accessed 08 Oct 2021

  208. M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Al-doped ZnO for highly sensitive CO gas sensors. Sens. Actuators B Chem. 196, 413–420 (2014). https://doi.org/10.1016/j.snb.2014.01.068

    Article  CAS  Google Scholar 

  209. Z. Wang, Z. Li, T. Jiang, X. Xu, C. Wang, Ultrasensitive hydrogen sensor based on Pd0-loaded SnO2 electrospun nanofibers at room temperature. ACS Appl. Mater. Interfaces 5(6), 2013–2021 (2013). https://doi.org/10.1021/am3028553

    Article  CAS  PubMed  Google Scholar 

  210. R.R. Khan, M.J. Siddiqui, Review on effects of particulates: sulfur dioxide and nitrogen dioxide on human health. Int. Res. J. Environ. Sci. 3(4), 70–73 (2014)

    CAS  Google Scholar 

  211. J. Brunet, L. Spinelle, A. Pauly, M. Dubois, K. Guerin, M. Bouvet, C. Varenne, B. Lauron, A. Hamwi, All-organic device with integrated chemical filter dedicated to the selective measurement of NO2 in air. Org. Electron. 11(7), 1223–1229 (2010). https://doi.org/10.1016/j.orgel.2010.04.021

    Article  CAS  Google Scholar 

  212. Z. Li, Y. Liu, D. Guo, J. Guo, Y. Su, Room-temperature synthesis of CuO/reduced graphene oxide nanohybrids for high-performance NO2 gas sensor. Sens. Actuators B Chem. 271, 306–310 (2018). https://doi.org/10.1016/j.snb.2018.05.097

    Article  CAS  Google Scholar 

  213. D. Van Sickle, M.A. Wenck, A. Belflower, D. Drociuk, J. Ferdinands, F. Holguin, E. Svendsen, L. Bretous, S. Jankelevich, J.J. Gibson, R.L. Moolenaar, Acute health effects after exposure to chlorine gas released after a train derailment. Am. J. Emerg. Med. 27(1), 1–7 (2009). https://doi.org/10.1016/j.ajem.2007.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  214. C. Winder, The toxicology of chlorine. Environ. Res. 85(2), 105–114 (2001). https://doi.org/10.1006/enrs.2000.4110

    Article  CAS  PubMed  Google Scholar 

  215. C.W. White, J.G. Martin, Chlorine gas inhalation: human clinical evidence of toxicity and experience in animal models. Proc. Am. Thorac. Soc. 7(4), 257–263 (2010). https://doi.org/10.1513/pats.201001-008SM

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. T. Miyata, T. Hikosaka, T. Minami, High sensitivity chlorine gas sensors using multicomponent transparent conducting oxide thin films. Sens. Actuators B Chem. 69(1–2), 16–21 (2000). https://doi.org/10.1016/S0925-4005(00)00301-4

    Article  CAS  Google Scholar 

  217. J. Tamaki, C. Naruo, Y. Yamamoto, M. Matsuoka, Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation. Sens. Actuators B Chem. 83(1–3), 190–194 (2002). https://doi.org/10.1016/S0925-4005(01)01039-5

    Article  CAS  Google Scholar 

  218. P. Van Tong, N.D. Hoa, N. Van Duy, N. Van Hieu, Micro-wheels composed of self-assembled tungsten oxide nanorods for highly sensitive detection of low level toxic chlorine gas. RSC Adv. 5(32), 25204–25207 (2015). https://doi.org/10.1039/C5RA00916B

    Article  CAS  Google Scholar 

  219. A. Singh, Z. Salmi, N. Joshi, P. Jha, P. Decorse, H. Lecoq, S. Lau-Truong, M. Jouini, D.K. Aswal, M.M. Chehimi, Electrochemical investigation of free-standing polypyrrole–silver nanocomposite films: a substrate free electrode material for supercapacitors. RSC Adv. 3(46), 24567–24575 (2013). https://doi.org/10.1039/C3RA42786B

    Article  CAS  Google Scholar 

  220. A. Singh, Z. Salmi, P. Jha, N. Joshi, A. Kumar, P. Decorse, H. Lecoq, S. Lau-Truong, D.K. Aswal, D.S.K. Gupta, M.M. Chehimi, One step synthesis of highly ordered free standing flexible polypyrrole-silver nanocomposite films at air–water interface by photopolymerization. RSC Adv. 3(32), 13329–13336 (2013). https://doi.org/10.1039/C3RA40884A

    Article  CAS  Google Scholar 

  221. A. Singh, Z. Salmi, N. Joshi, P. Jha, A. Kumar, H. Lecoq, S. Lau, M.M. Chehimi, D.K. Aswal, S.K. Gupta, Photo-induced synthesis of polypyrrole-silver nanocomposite films on N-(3-trimethoxysilylpropyl) pyrrole-modified biaxially oriented polyethylene terephthalate flexible substrates. RSC Adv. 3(16), 5506–5523 (2013). https://doi.org/10.1039/C3RA22981E

    Article  CAS  Google Scholar 

  222. N. Joshi, V. Saxena, A. Singh, S.P. Koiry, A.K. Debnath, M.M. Chehimi, D.K. Aswal, S.K. Gupta, Flexible H2S sensor based on gold modified polycarbazole films. Sens. Actuators B Chem. 200, 227–234 (2014). https://doi.org/10.1016/j.snb.2014.04.041

    Article  CAS  Google Scholar 

  223. E.P. Stuckert, E.R. Fisher, Ar/O2 and H2O plasma surface modification of SnO2 nanomaterials to increase surface oxidation. Sens. Actuators B Chem. 208, 379–388 (2015). https://doi.org/10.1016/j.snb.2014.11.049

    Article  CAS  Google Scholar 

  224. H. Liu, Y. Chu, Y. Liu, T. Hayasaka, Z. Shao, N. Joshi, X. Wang, Z. You, L. Lin, Label-free AC sensing by a graphene transistor for 100-ppb formaldehyde in air. In, 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 488–491 (2019). https://doi.org/10.1109/MEMSYS.2019.8870717

  225. H. Liu, Y. Liu, Y. Chu, T. Hayasaka, N. Joshi, Y. Cui, X. Wang, Z. You, L. Lin, AC phase sensing of graphene FETs for chemical vapors with fast recovery and minimal baseline drift. Sens. Actuators B Chem. 263, 94–102 (2018). https://doi.org/10.1016/j.snb.2018.01.244

    Article  CAS  Google Scholar 

  226. H. Liu, Y. Chu, Y. Liu, T. Hayasaka, N. Joshi, Y. Cui, X. Wang, Z. You, L. Lin, Selective sensing of chemical vapors using phase spectra detection on CVD graphene fet. In, 2018 IEEE Micro Electro Mechanical Systems (MEMS), pp. 210–213 (2018). https://doi.org/10.1109/MEMSYS.2018.8346521

  227. Health Link BC, Indoor air quality: volatile organic compound (VOCs), https://www.healthlinkbc.ca/healthlinkbc-files/air-quality-VOCs. Accessed 08 Oct 2021

Download references

Acknowledgements

Priyanka Joshi thanks the Brazilian research funding agency CNPq (164743/2021-9) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam M. Patel.

Ethics declarations

Conflict of interest

Authors state that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, V., Bhaliya, J., Patel, G.M. et al. Room-Temperature Chemiresistive Gas Sensing of SnO2 Nanowires: A Review. J Inorg Organomet Polym 32, 741–772 (2022). https://doi.org/10.1007/s10904-021-02198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02198-5

Keywords

Navigation