Log in

An Entropy-Regularized ADMM For Binary Quadratic Programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We propose an entropy regularized splitting model using low-rank factorization for solving binary quadratic programming with linear inequality constraints. Different from the semidefinite programming relaxation model, our model preserves the rank-one constraint and aims to find high quality rank-one solutions directly. The factorization transforms the variables into low-rank matrices, while the entropy term enforces the low-rank property of the splitting variable . A customized alternating direction method of multipliers is utilized to solve the proposed model. Specifically, our method uses the augmented Lagrangian function to deal with inequality constraints, and solves one subproblem on the oblique manifold by a regularized Newton method. Numerical results on the multiple-input multiple-output detection problem, the maxcut problem and the quadratic \(0-1\) problem indicate that our proposed algorithm has advantage over the SDP methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Downloaded from http://www.stanford.edu/yyye/yyye/Gset.

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press, Princeton, NJ (2008). With a foreword by Paul Van Dooren

  2. Absil, P.A., Mahony, R., Trumpf, J.: An extrinsic look at the Riemannian Hessian. In: Geometric science of information, Lecture Notes in Comput. Sci., vol. 8085, pp. 361–368. Springer, Heidelberg (2013)

  3. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0-1 problem. Math. Program. 109(1, Ser. A), 55–68 (2007)

  4. Boumal, N., Voroninski, V., Bandeira, A.S.: Deterministic guarantees for Burer-Monteiro factorizations of smooth semidefinite programs. Comm. Pure Appl. Math. 73(3), 581–608 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buchheim, C., Montenegro, M., Wiegele, A.: SDP-based branch-and-bound for non-convex quadratic integer optimization. J. Global Optim. 73(3), 485–514 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burer, S., Monteiro, R.D.C.: A projected gradient algorithm for solving the maxcut SDP relaxation. Optim. Methods Softw. 15(3–4), 175–200 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. 95(2, Ser. B), 329–357 (2003). Computational semidefinite and second order cone programming: the state of the art

  8. Chang, K., Shao, S., Zhang, D.: Cheeger’s cut, maxcut and the spectral theory of 1-Laplacian on graphs. Sci. China Math. 60(11), 1963–1980 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clarke, F.H.: Optimization and nonsmooth analysis, Classics in Applied Mathematics, vol. 5, second edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1990)

  10. Damen, M., El Gamal, H., Caire, G.: On maximum-likelihood detection and the search for the closest lattice point. IEEE Transactions on Information Theory 49(10), 2389–2402 (2003). https://doi.org/10.1109/TIT.2003.817444

    Article  MathSciNet  MATH  Google Scholar 

  11. Fan, X., Song, J., Palomar, D.P., Au, O.C.: Universal binary semidefinite relaxation for ML signal detection. IEEE Transactions on Communications 61(11), 4565–4576 (2013)

    Article  Google Scholar 

  12. Fred Glover Gary A. Kochenberger, B.A.: Adaptive memory tabu search for binary quadratic programs. Management Sci. 44(3), 336–345 (1998)

  13. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Helmberg, C., Rendl, F.: Solving quadratic \((0,1)\)-problems by semidefinite programs and cutting planes. Math. Programming 82(3, Ser. A), 291–315 (1998)

  15. Hu, J., Milzarek, A., Wen, Z., Yuan, Y.: Adaptive quadratically regularized Newton method for Riemannian optimization. SIAM J. Matrix Anal. Appl. 39(3), 1181–1207 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jalden, J., Martin, C., Ottersten, B.: Semidefinite programming for detection in linear systems - optimality conditions and space-time decoding. In: 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03)., vol. 4, pp. IV–9 (2003)

  17. Jalden, J., Ottersten, B.: Channel dependent termination of the semidefinite relaxation detector. In: 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 4, pp. IV–IV (2006)

  18. Jalden, J., Ottersten, B., Ma, W.K.: Reducing the average complexity of ml detection using semidefinite relaxation. In: Proceedings. (ICASSP ’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., vol. 3, pp. iii/1021–iii/1024 Vol. 3 (2005)

  19. Jalden, J., Seethaler, D., Matz, G.: Worst- and average-case complexity of LLL lattice reduction in MIMO wireless systems. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2685–2688 (2008)

  20. Jiang, R., Liu, Y.F., Bao, C., Jiang, B.: Tightness and equivalence of semidefinite relaxations for MIMO detection. ar**v preprint ar**v:2102.04586 (2021)

  21. Krechetov, M., Marecek, J., Maximov, Y., Takac, M.: Entropy penalized semidefinite programming. Twenty-Eighth International Joint Conference on Artificial Intelligence IJCAI-19 (2019)

  22. Krislock, N., Malick, J., Roupin, F.: Improved semidefinite bounding procedure for solving max-cut problems to optimality. Math. Program. 143(1-2, Ser. A), 61–86 (2014)

  23. Krislock, N., Malick, J., Roupin, F.: BiqCrunch: a semidefinite branch-and-bound method for solving binary quadratic problems. ACM Trans. Math. Software 43(4), Art. 32, 23 (2017)

  24. Lenstra, A.K., Lenstra, H.W., Jr., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, H., Hu, J., Li, Y., Wen, Z.: Optimization: Modeling. Higher Education Press, Algorithm and Theory (2020)

    Google Scholar 

  26. Liu, H., Yue, M.C., So, A.M.C., Ma, W.K.: A discrete first-order method for large-scale MIMO detection with provable guarantees. In: 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2017)

  27. Lu, C., Liu, Y.F., Zhang, W.Q., Zhang, S.: Tightness of a new and enhanced semidefinite relaxation for MIMO detection. SIAM J. Optim. 29(1), 719–742 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lu, C., Liu, Y.F., Zhou, J.: An enhanced SDR based global algorithm for nonconvex complex quadratic programs with signal processing applications. IEEE Open Journal of Signal Processing 1, 120–134 (2020)

    Article  Google Scholar 

  29. Luo, Z.Q., Ma, W.K., So, M.C., Ye, Y., Zhang, S.: Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine 27(3), 20–34 (2010)

    Article  Google Scholar 

  30. Mao, Z., Wang, X., Wang, X.: Semidefinite programming relaxation approach for multiuser detection of QAM signals. IEEE Transactions on Wireless Communications 6(12), 4275–4279 (2007)

    Article  Google Scholar 

  31. Mobasher, A., Taherzadeh, M., Sotirov, R., Khandani, A.K.: A near-maximum-likelihood decoding algorithm for MIMO systems based on semi-definite programming. IEEE Trans. Inform. Theory 53(11), 3869–3886 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Murugan, A.D., El Gamal, H., Damen, M.O., Caire, G.: A unified framework for tree search decoding: rediscovering the sequential decoder. IEEE Trans. Inform. Theory 52(3), 933–953 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nocedal, J., Wright, S.J.: Numerical optimization, second edn. Springer Series in Operations Research and Financial Engineering. Springer (2006)

  34. Pan, J., Ma, W.K., Jaldén, J.: MIMO detection by Lagrangian dual maximum-likelihood relaxation: reinterpreting regularized lattice decoding. IEEE Trans. Signal Process. 62(2), 511–524 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 121(2, Ser. A), 307–335 (2010)

  36. Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. The Regents of the University of California (1961)

  37. So, A.M.C.: Probabilistic analysis of the semidefinite relaxation detector in digital communications. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 698–711. SIAM, Philadelphia, PA (2010)

  38. Sun, D., Sun, J.: Semismooth matrix-valued functions. Math. Oper. Res. 27(1), 150–169 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, D., Toh, K.C., Yuan, Y., Zhao, X.Y.: SDPNAL+: a Matlab software for semidefinite programming with bound constraints (version 1.0). Optim. Methods Softw. 35(1), 87–115 (2020)

  40. Tsallis, C.: Possible generalization of boltzmann-gibbs statistics. Journal of Statistical Physics 52(1), 479–487 (1988). https://doi.org/10.1007/BF01016429. 10.1007/BF01016429

  41. Vandereycken, B.: Low-rank matrix completion by Riemannian optimization. SIAM J. Optim. 23(2), 1214–1236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wai, H.T., Ma, W.K., So, A.M.C.: Cheap semidefinite relaxation MIMO detection using row-by-row block coordinate descent. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3256–3259 (2011)

  43. Weiss, A., Cheema, S.A., Haardt, M., Yeredor, A.: Performance analysis of the Gaussian quasi-maximum likelihood approach for independent vector analysis. IEEE Transactions on Signal Processing 66(19), 5000–5013 (2018). https://doi.org/10.1109/TSP.2018.2863656

    Article  MathSciNet  MATH  Google Scholar 

  44. Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142(1-2, Ser. A), 397–434 (2013)

  45. Wiegele: Biq mac library - a collection of max-cut and quadratic 0-1 programming instances of medium size. Technical report (2007)

  46. Wubben, D., Bohnke, R., Kuhn, V., Kammeyer, K.D.: MMSE extension of V-BLAST based on sorted QR decomposition. In: 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484), vol. 1, pp. 508–512 Vol.1 (2003)

  47. Yang, W.H., Zhang, L.H., Song, R.: Optimality conditions for the nonlinear programming problems on Riemannian manifolds. Pac. J. Optim. 10(2), 415–434 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, J., Ma, S., Zhang, S.: Primal-dual optimization algorithms over Riemannian manifolds: an iteration complexity analysis. Math. Program. 184(1-2, Ser. A), 445–490 (2020)

  49. Zhang, S.: Quadratic maximization and semidefinite relaxation. Math. Program. 87(3, Ser. A), 453–465 (2000)

  50. Zhao, P.F., Li, Q.N., Chen, W.K., Liu, Y.F.: An efficient quadratic programming relaxation based algorithm for large-scale MIMO detection. SIAM Journal on Optimization 31(2), 1519–1545 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the AE and two anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaiwen Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z. Wen was supported in part by the NSFC grant 11831002.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Deng, K., Liu, H. et al. An Entropy-Regularized ADMM For Binary Quadratic Programming. J Glob Optim 87, 447–479 (2023). https://doi.org/10.1007/s10898-022-01144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01144-0

Keywords

Navigation