Log in

Biosynthesis, Structural, Spectroscopic, Photoluminescence, and Antifungal Activity of Ni-doped CeO2 Nanoparticles

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Pedalium Murex leaf extract was used in this study to create Nickel-doped Cerium oxide (Ni-CeO2) nanoparticles at 3 mol% and 5 mol% molar concentrations. The biosynthesized process was applied for the fabrication of Ni-CeO2 NPs. The X-ray diffraction method was used to identify their crystal structure. The XRD measurements showed that the Ni-CeO2 NPs crystallized into the face-centred cubic system. Fourier transform infrared spectral study was applied to explore the molecular vibrations and chemical bonding. The surface texture and chemical ingredients of Ni-CeO2 NPs were studied using field-emission scanning electron microscopy and energy-dispersive X-ray analysis. The EDX map** spectra illustrate the uniform dispersal of Ce, Ni, and O atoms over the sample’s surface. X-ray photoelectron spectroscopy (XPS) was conducted to confirm the chemical state of the Ni-CeO2 NPs. UV–Vis spectrum study was performed to ascertain the photon absorption, bandgap, and Urbach edge of Ni-CeO2 NPs. Photoluminescence (PL) research has been used to study the light-emitting characteristic of Ni-CeO2 NPs. The emissive intensity transition corresponding to Ni-CeO2 NPs was found to increase with the dopant level. The CIE 1931 chromaticity map was plotted to find the aptness of the samples for optical uses. The antifungal ability of Ni-CeO2 NPs was evaluated against the fungi candida albicans and candida krusein with the agar well-diffusion process. The fungicidal activity of the 3 mol% Ni doped CeO2 nanoparticles has shown a maximum zone of inhibition. The experimental findings illustrate the utility of Ni-CeO2 NPs for optical and antifungal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Valentina M, Luisana DC, Stephen GJS, Simona O, Magda B, Anna C, Pierluigi R, Yuri V, Adriele M (2018) Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. Roy Soc Open Sci 5:171113. https://doi.org/10.1098/rsos.171113

    Article  CAS  Google Scholar 

  2. Ali F, Khalid NR, Nabi G, Ul-Hamid A, Ikram M (2021) Hydrothermal synthesis of cerium-doped Co3O4 nanoflakes as an electrode for supercapacitor application. Int J Ener Res 45:1999–2010. https://doi.org/10.1002/er.5893

    Article  CAS  Google Scholar 

  3. Mohanraj K, Balasubramanian D, Chandrasekaran J, Chandra Bose A (2016) Synthesis and characterizations of Ag-doped CdO nanoparticles for P-N junction diode application. Mater Sci Semicond Process 79:74–91. https://doi.org/10.1016/j.mssp.2018.02.006

    Article  CAS  Google Scholar 

  4. Kumar V, Sharma DK, Sharma KP, Agarwal S, Bansal MK, Dwivedi DH (2016) Structural, optical and electrical characterization of nanocrystalline CdO films for device applications. Optik 127:4254–4257. https://doi.org/10.1016/j.ijleo.2016.01.186

    Article  CAS  Google Scholar 

  5. Rhoda JC, Chellammal S, Albert HM, Ravichandran K, AlosiousGonsago C (2024) Synthesis, Spectroscopic, and Antibacterial Characterizations of Cadmium-Based Nanoparticles. J Fluoresc 34:587–598. https://doi.org/10.1007/s10895-023-03290-4

    Article  CAS  PubMed  Google Scholar 

  6. Suchitra JP, Bharathi Devi V (2020) Synthesis and optical characterization of Cu(mq)2 nanoparticles. Inorg Nano-Metal Chem 51:756–760. https://doi.org/10.1080/24701556.2020.1800034

    Article  CAS  Google Scholar 

  7. Kumar P, Kumar A, Rizvi MA, Moosvi SK, Krishnan V, Duvenhage MM, Roos WD, Swart HC (2020) Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles. Appl Surf Sci 514:145930. https://doi.org/10.1016/j.apsusc.2020.145930

    Article  CAS  Google Scholar 

  8. Kumar P, Mathpal MC, Jagannath G, Prakash J, Maze JR, Roos WD, Swart HC (2021) Optical limiting applications of resonating plasmonic Au nanoparticles in a dielectric glass medium. Nanotechnol 32:345709. https://doi.org/10.1088/1361-6528/abfee6

    Article  CAS  Google Scholar 

  9. Albert HM, Lohitha T, Alagesan K, AlosiousGonsago C, Vinita V (2021) Performance of ZnSO4 doped CeO2 nanoparticles and their antibacterial mechanism. Mater Tod Proceed 47:1030–1034. https://doi.org/10.1016/j.matpr.2021.06.124

    Article  CAS  Google Scholar 

  10. Srinivasan MP, Uthiram C, Ayeshamariam A, Kaviyarasu K, Punithavelan N (2023) Dielectric performance of CeO2/ZnO core-shell nanocomposite with their structural, optical and morphological properties. J King Saud Univ Sci 35:102508. https://doi.org/10.1016/j.jksus.2022.102508

    Article  Google Scholar 

  11. Dharmaraj VR, Chung RJ, Arularasu M, Rajendran TV, Kaviyarasu K (2023) Solid composite electrolyte formed via CeO2 nanoparticles and supramolecular network material for lithium-ion batteries. J Aus Ceram Soc 59:837–847. https://doi.org/10.1007/s41779-023-00877-9

    Article  CAS  Google Scholar 

  12. Kaviyarasu K, Fuku X, Mola GT, Manikandan E, Kennedy J, Maaza M (2016) Photoluminescence of well-aligned ZnO doped CeO2 nanoplatelets by a solvothermal route. Mater Lett 183:351–354. https://doi.org/10.1016/j.matlet.2016.07.143

    Article  CAS  Google Scholar 

  13. Kaviyarasu K, Manikandan E, Nuru ZY, Maaza M (2015) Investigation on the structural properties of CeO2 nanofibers via CTAB surfactant. Mater Lett 160:61–63. https://doi.org/10.1016/j.matlet.2015.07.099

    Article  CAS  Google Scholar 

  14. Jayakumar G, Albert Irudayaraj A, Dhayal Raj A, John Sundaram S, Kaviyarasu K (2022) Electrical and magnetic properties of nanostructured Ni doped CeO2 for optoelectronic applications. J Phys Chem Soli 160:110369. https://doi.org/10.1016/j.jpcs.2021.110369

    Article  CAS  Google Scholar 

  15. Kafader JO, Topolski JE, Jarrold CC (2016) Molecular and electronic structures of cerium and cerium suboxide clusters. J Chem Phys 145:154306. https://doi.org/10.1063/1.4964817

    Article  CAS  PubMed  Google Scholar 

  16. Kazemi S, Hosseingholian A, Gohari SD, Feirahi F, Moammeri F, Mesbahian G, Moghaddam ZS, Ren Q (2023) Recent advances in green synthesized nanoparticles: from production to application. Mater Today Sust 24:100500. https://doi.org/10.1016/j.mtsust.2023.100500

    Article  Google Scholar 

  17. Nag S, Mitra O, Sankarganesh P, Bhattacharjee A, Mohanto S, Jaswanth Gowda BH, Kar S, Ramaiah S, Anbarasu A, Ahmed MG (2024) Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review. Mater Tod Chem 35:101894. https://doi.org/10.1016/j.mtchem.2023.101894

    Article  CAS  Google Scholar 

  18. Thakur N, Manna P, Das J (2019) Synthesis and biomedical applications of nanoceria, a redox-active nanoparticle. J Nanobiotechnol 17:84. https://doi.org/10.1186/s12951-019-0516-9

    Article  CAS  Google Scholar 

  19. Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J (2022) Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale 14:2534–2571. https://doi.org/10.1039/D1NR08144F

    Article  CAS  PubMed  Google Scholar 

  20. Sinha SN, Paul D (2015) Phytosynthesis of Silver Nanoparticles Using Andrographis paniculata Leaf Extract and Evaluation of Their Antibacterial Activities. Spect Lett 48:600–604. https://doi.org/10.1080/00387010.2014.938756

    Article  CAS  Google Scholar 

  21. Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, Hong J (2022) Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov 26:102336. https://doi.org/10.1016/j.eti.2022.102336

    Article  CAS  Google Scholar 

  22. Ye L, Cao Z, Liu X, Cui Z, Li Z, Liang Y, Zhu S, Wu S (2022) Noble metal-based nanomaterials as antibacterial agents. J Alloy Compd 904:164091. https://doi.org/10.1016/j.jallcom.2022.164091

    Article  CAS  Google Scholar 

  23. Rani N, Singh P, Kumar S, Kumar P, Bhankar V, Kumar K (2023) Plant-mediated synthesis of nanoparticles and their applications: A review. Mater Res Bull 163:112233. https://doi.org/10.1016/j.materresbull.2023.112233

    Article  CAS  Google Scholar 

  24. Altaf M, Manoharadas S, Zeyad MT (2021) Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens. Microscopy Res Tech 84:1638–1648. https://doi.org/10.1002/jemt.23724

    Article  CAS  Google Scholar 

  25. Parvathy S, Manjula G, Balachandar R, Subbaiya R (2022) Green synthesis and characterization of cerium oxide nanoparticles from Artabotrys hexapetalus leaf extract and its antibacterial and anticancer properties. Mater Lett 314:131811. https://doi.org/10.1016/j.matlet.2022.131811

    Article  CAS  Google Scholar 

  26. Joshi NC, Negi T, Gururani P (2023) Papaya (Carica papaya) leaves extract-based synthesis, characterizations and antimicrobial activities of CeO2 nanoparticles (CeO2 NPs). Inorg Nano-Metal Chem 1–8. https://doi.org/10.1080/24701556.2023.2166068

  27. Sathiyapriya R, Balaji M, Rajesh S (2020) Bio-Synthesis of Cerium Oxide Nanoparticles from Coriandrum sativum L. Leaf Extract and their Antibacterial Activity. Int J Adv Sci Eng 6:1439–1444

    Article  CAS  Google Scholar 

  28. Yulizar Y, Kusrini E, Apriandanu DOB, Nurdini N (2020) Datura metel L. Leaves extract mediated CeO2 nanoparticles: Synthesis, characterizations, and degradation activity of DPPH radical. Surf Interf 19:100437. https://doi.org/10.1016/j.surfin.2020.100437

    Article  CAS  Google Scholar 

  29. Arumugam A, Karthikeyan C, Hameed ASH, Gopinath K, Gowri S, Karthika V (2015) Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C 49:408–415. https://doi.org/10.1016/j.msec.2015.01.042

    Article  CAS  Google Scholar 

  30. Maensiri S, Labuayai S, Laokul P, Klinkaewnarong J, Swatsitang E (2014) Structure and optical properties of CeO2 nanoparticles prepared by using lemongrass plant extract solution. Jpn J Appl Phys 53:06JG14. https://doi.org/10.7567/JJAP.53.06JG14

    Article  CAS  Google Scholar 

  31. Bakkiyaraj R, Subramanian R, Balakrishnan M, Ravichandran K (2021) Biofabrication of CeO2 nanoparticles, characterization, photocatalytic, and biological activities. Inorg Nano-Metal Chem. 1–9. https://doi.org/10.1080/24701556.2021.1983841

  32. Maqbool Q, Nazar M, Naz S, Hussain T, Jabeen N, Kausar R (2016) Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Inter J Nanomed 11:5015–5025. https://www.tandfonline.com/doi/abs/10.2147/IJN.S113508

    Article  CAS  Google Scholar 

  33. Aseyd Nezhad S, Es-haghi A, Tabrizi MH (2020) Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization, and biological activities. Appl Organometallic Chem 34:e5314. https://doi.org/10.1002/aoc.5314

    Article  CAS  Google Scholar 

  34. Naidi SN, Harunsani MH, Tan AL, Mansoob Khan M (2022) Structural, Morphological and Optical Studies of CeO2 Nanoparticles Synthesized Using Aqueous Leaf Extract of Pometia pinnata. BioNanoSci 12:393–404. https://doi.org/10.1007/s12668-022-00956-4

    Article  Google Scholar 

  35. Miri A, Sarani M (2018) Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceram Internat 44:12642–12647. https://doi.org/10.1016/j.ceramint.2018.04.063

    Article  CAS  Google Scholar 

  36. Sabouri Z, Sabouri M, Amiri MS, Khatami M, Darroudi M (2022) Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater Technol 37:555–568. https://doi.org/10.1080/10667857.2020.1863573

    Article  CAS  Google Scholar 

  37. Narayanan M, Kiran A, Natarajan D, Kandasamy S, Shanmugam S, Alshiekheid M, Almoallim HS, Pugazhendhi A (2022) The pharmaceutical potential of crude ethanol leaf extract of Pedalium murex (L.). Process Biochem 112:234–240. https://doi.org/10.1016/j.procbio.2021.12.003

    Article  CAS  Google Scholar 

  38. Madasamy S, Ramananthatheerthan A, Marikani K, Venugopal D, Aldhayan SHA, Al-Dayan N, Palanivelu S, Dhanasekaran S (2023) Biofabrication of nickel oxide nanoparticles from Pedalium Murex leaf extract: A promising approach for biomedical and environmental applications. Surf Interf 40:103087. https://doi.org/10.1016/j.surfin.2023.103087

    Article  CAS  Google Scholar 

  39. Suchitra JP, Kala A, Sagadevan S, Bharathi Devi V, Podder J (2019) Synthesis and characterization of bis(2 methyl-8-hydroxyquinoline) zinc nanoparticles for organic light emitting diode applications. Mol Simul 45:790–796. https://doi.org/10.1080/08927022.2019.1594418

    Article  CAS  Google Scholar 

  40. Lohitha T, Albert HM (2023) Biosynthesis of pure and MnSO4 (II) doped CeO2 nanoparticles: Electrochemical studies and its antibacterial activity. Mater Tod Proceed. https://doi.org/10.1016/j.matpr.2023.02.239

    Article  Google Scholar 

  41. Leel NS, Kiran M, Kumawat MK, Alvi PA, Vats VS, Patidar D, Dalela B, Kumar S, Dalela S (2023) Oxygen vacancy driven luminescence, ferromagnetic and electronic structure properties of Eu doped CeO2 nanoparticles. J Luminesc 263:119981. https://doi.org/10.1016/j.jlumin.2023.119981

    Article  CAS  Google Scholar 

  42. Tiernan H, Byrne B, Sergei GK (2020) ATR-FTIR spectroscopy and spectroscopic imaging for the analysis of biopharmaceuticals. Spectrochim Acta A. 241:118636. https://doi.org/10.1016/j.saa.2020.118636

    Article  CAS  Google Scholar 

  43. HM Albert, Gonsago CA (2023) Green Procedure for the Synthesis of Copper Nanoparticles using Nerium oleander Leaf Extract: Characterizations and Applications. Orient J Chem 39:792–797. https://doi.org/10.13005/ojc/390332

  44. Geetha GV, Keerthana SP, Madhuri K, Sivakumar R (2021) Effect of solvent volume on the properties of ZnWO4 nanoparticles and their photocatalytic activity for the degradation of cationic dye. Inorg Chem Commun 132:108810. https://doi.org/10.1016/j.inoche.2021.108810

    Article  CAS  Google Scholar 

  45. Lewczuk B, Szyryńska N (2021) Field-Emission Scanning Electron Microscope as a Tool for Large-Area and Large-Volume Ultrastructural Studies. Animals 11:3390. https://doi.org/10.3390/ani11123390

    Article  PubMed  PubMed Central  Google Scholar 

  46. Abd Mutalib M, Rahman MA, Othman MHD, Ismail AF, Jaafar F (2017) Ch 9 - Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy. In: Hilal N, Ismail AF, Matsuura T, Oatley-Radcliffe D (eds) Membrane Characterization. Elsevier, pp 161–179. https://doi.org/10.1016/B978-0-444-63776-5.00009-7

  47. Jagadeesh P, Rangappa SM, Siengchin S (2024) Advanced characterization techniques for nanostructured materials in biomedical applications. Adva Ind Eng Poly Res 7:122–143. https://doi.org/10.1016/j.aiepr.2023.03.002

    Article  CAS  Google Scholar 

  48. Parveen IM, Asvini V, Saravanan G, Ravichandran K (2017) Investigation of Ni-doped CeO2 nanoparticles–spintronics application. Ionics 23:1285–1291. https://doi.org/10.1007/s11581-016-1937-1

    Article  CAS  Google Scholar 

  49. Deng D, Chen N, **ao X, Du S, Wang Y (2017) Electrochemical performance of CeO2 nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. Ionics 23:121–129. https://doi.org/10.1007/s11581-016-1812-0

    Article  CAS  Google Scholar 

  50. Albert HM, Saarwin SS, AlosiousGonsago C (2023) Growth, structural, optical, and thermal characterizations of l-serine-doped succinic acid (LSSA) crystals for nonlinear optical applications. J Mater Sci Mater Electron 34:1407. https://doi.org/10.1007/s10854-023-10840-w

    Article  CAS  Google Scholar 

  51. Albert HM, AlosiousGonsago C (2023) Crystallization, vibrational, optical, dielectric, and hardness analyses of l-histidine hydrochloride hydrate crystals for nonlinear optical uses. J Nonlinear Opt Phys Mater. https://doi.org/10.1142/S0218863523500881

    Article  Google Scholar 

  52. Kumar A, Kumar R, Verma N, Anupama AV, Choudhary HK, Philip R, Sahoo B (2020) Effect of the band gap and the defect states present within band gap on the non-linear optical absorption behavior of yttrium aluminium iron garnets. Opt Mater 108:110163. https://doi.org/10.1016/j.optmat.2020.110163

    Article  CAS  Google Scholar 

  53. Ebrahimi S, Yarmand B (2020) Optimized optical band gap energy and Urbach tail of Cr2S3 thin films by Sn incorporation for optoelectronic applications. Physica B Conden Mat 593:412292. https://doi.org/10.1016/j.physb.2020.412292

    Article  CAS  Google Scholar 

  54. Norouzzadeh P, Mabhouti Kh, Golzan MM, Naderali R (2020) Investigation of structural, morphological and optical characteristics of Mn substituted Al-doped ZnO NPs: A Urbach energy and Kramers-Kronig study. Optik 204:164227. https://doi.org/10.1016/j.ijleo.2020.164227

    Article  CAS  Google Scholar 

  55. Albert HM, Jemima T, AlosiousGonsago C (2023) Synthesis, Spectroscopic, Optical, and Thermal Characterizations of Zinc (Tris)-Thiourea Sulfate: A Metal-Organic Crystal. J Fluoresc 34:1057–1063. https://doi.org/10.1007/S10895-023-03335-8

    Article  PubMed  Google Scholar 

  56. Huang T-H, Tian-Cheng Wu, Zhao F-Z, Zheng D, Luo C, Liang G-M, Zhao B (2021) Structures, electronic and luminescent properties of Cu(I)-quinoline complex at different temperatures and its application to a red light-emitting diode. Inorgan Chimi Acta 514:120008. https://doi.org/10.1016/j.ica.2020.120008

    Article  CAS  Google Scholar 

  57. Bazhukova IN, Sokovnin SY, Ilves VG, Myshkina AV, Vazirov RA, Pizurova N, Kasyanova VV (2019) Luminescence and optical properties of cerium oxide nanoparticles. Opt Mater 92:136–142. https://doi.org/10.1016/j.optmat.2019.04.021

    Article  CAS  Google Scholar 

  58. Kumar S, Choudhary RB (2023) Ameliorated optical, luminescent, and thermo-chemical features of polymer derived PPy-SnO2 nanocomposite as efficient emissive layer material (EML). Spectrochim Acta A 302:123099. https://doi.org/10.1016/j.saa.2023.123099

    Article  CAS  Google Scholar 

  59. Livengood SJ, Drew RH, Perfect JR (2020) Combination Therapy for Invasive Fungal Infections. Curr Fungal Infect Rep 14:40–49. https://doi.org/10.1007/s12281-020-00369-4

    Article  Google Scholar 

  60. Kumar P, Mathpal MC, Prakash J, Bennie CV, Roos WD, Swart HC (2020) Band gap tailoring of cauliflower-shaped CuO nanostructures by Zn do** for antibacterial applications. J Alloy Compd 832:154968. https://doi.org/10.1016/j.jallcom.2020.154968

    Article  CAS  Google Scholar 

  61. Kumar P, Inwati GK, Mathpal MC, Ghosh S, Roos WD, Swart HC (2021) Defects induced enhancement of antifungal activities of Zn doped CuO nanostructures. Appl Surf Sci 560:150026. https://doi.org/10.1016/j.apsusc.2021.150026

    Article  CAS  Google Scholar 

  62. Kumar P, Mathpal MC, Inwati GK, Ghosh S, Kumar V, Roos WD, Swart HC (2020) Optical and surface properties of Zn doped CdO nanorods and antimicrobial applications. Coll Surf A: Physicochem Eng Asp 605:125369. https://doi.org/10.1016/j.colsurfa.2020.125369

    Article  CAS  Google Scholar 

  63. Kumar P, Mathpal MC, Ghosh S, Inwati GK, Maze JR, Duvenhage MM, Roos WD, Swart HC (2022) Plasmonic Au nanoparticles embedded in glass: Study of TOF-SIMS, XPS and its enhanced antimicrobial activities. J Alloy Compd 909:164789. https://doi.org/10.1016/j.jallcom.2022.164789

    Article  CAS  Google Scholar 

  64. Achilonu CC, Kumar P, Swart HC, Roos WD, Maris GJ (2024) Zinc Oxide: Gold Nanoparticles (ZnO: Au NPs) Exhibited Antifungal Efficacy Against Aspergillus niger and Aspergillus candidus. BioNanoSci. https://doi.org/10.1007/s12668-024-01406-z

    Article  Google Scholar 

  65. Juan CA, Pérez JM, de la Lastra FJ, Plou E-L (2021) The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci 22:4642. https://doi.org/10.3390/ijms22094642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pryshchepa O, Pomastowski P, Buszewski B (2020) Silver nanoparticles: Synthesis, investigation techniques, and properties. Adva Coll Interf Sci 284:102246. https://doi.org/10.1016/j.cis.2020.102246

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors, T. Lohitha and Helen Merina Albert contributed to the study conception and design. Material preparation, data collection, and analysis were performed by T. Lohitha. The first draft of the manuscript was written by T. Lohitha and Helen Merina Albert. The figures were prepared by T. Lohitha and Helen Merina Albert. All authors T. Lohitha and Helen Merina Albert commented on previous versions of the manuscript and all authors read and approved the final manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Helen Merina Albert.

Ethics declarations

Compliance with Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohitha, T., Albert, H.M. Biosynthesis, Structural, Spectroscopic, Photoluminescence, and Antifungal Activity of Ni-doped CeO2 Nanoparticles. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03831-5

Keywords

Navigation