Log in

Preparation and Judd-Ofelt Analysis of Warm Red Luminescent Eu3+ Complexes for Semiconductor Lasing Devices

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Six novel red photoluminescent Eu3+ complexes with 3-formyl chromone as the primary sensitizer (L) were synthesized using the solution precipitation method. These complexes are [Eu(L3).X] where X is 2H2O (C1), phen (C2), neo (C3), bipy (C4), dmph (C5), and biquno (C6). These complexes were characterized by elemental analysis, EDAX analysis, SEM, FT-IR, thermo-gravimetric analysis (TGA/DTA) and photoluminescence spectra. The transition rates, quantum efficiency, and J-O intensity parameters were calculated using emission data and luminescence decay time (τ). Complexes exhibit a strong emission peak (5D0 → 7F2) of the Eu3+ ion in their luminescence emission spectra in solid and solution states, making them an effective emitter of the red color in OLEDs. The branching ratio of these complexes ranges from 80.67–82.92 in solid and 50.53–62.65 in solution state; CIE color coordinate of complexes falls in the red region. The color purity ranges [CP(%)] values for solid 95.26–97.27% and for solution ranges 85.11–93.43%. Correlated color temperature (CCT) of the complexes (C1–C6) ranged from 2710 to 3049 K in the solid state and 1775 to 2450 K in the solution state. These complexes are promising red emitters in OLEDs, semiconductors, and leasing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Bala M, Kumar S, Boora P et al (2014) Enhanced optoelectronics properties of europium (III) complexes with β-diketone and nitrogen heterocyclic ligands. J Mater Sci Mater Electron 25:2850–2856

    Article  CAS  Google Scholar 

  2. Weissman SI (1942) Intramolecular energy transfer the fluorescence of complexes of europium. J Chem Phys 10:214–217

    Article  CAS  Google Scholar 

  3. Júnior JCA, dos Santos GL, Colaço MV et al (2020) New EuIII pyromellitic metal–organic framework of intense red-orange luminescence and high thermal stability for marking in gunshot residues. J Phys Chem C 124:9996–10006

    Article  Google Scholar 

  4. Vaz RCA, Esteves IO, Oliveira WXC et al (2020) Mononuclear lanthanide (III)-oxamate complexes as new photoluminescent field-induced single-molecule magnets: solid-state photophysical and magnetic properties. Dalt Trans 49:16106–16124

    Article  CAS  Google Scholar 

  5. Ilmi R, Anjum S, Haque A, Khan MS (2019) A new brilliant red emitting Eu(III) ternary complex and its transparent flexible and photostable poly(urethane) hybrid thin film for optoelectronic applications. J Photochem Photobiol A Chem 383:111968. https://doi.org/10.1016/J.JPHOTOCHEM.2019.111968

    Article  CAS  Google Scholar 

  6. Khan MS, Ilmi R, Sun W et al (2020) Bright and efficient red emitting electroluminescent devices fabricated from ternary europium complexes. J Mater Chem C 8:5600–5612

    Article  CAS  Google Scholar 

  7. Kumari P, Khatri S, Ahlawat P et al (2022) Designing of europium(III) complexes with β-keto carboxylic acid and nitrogen-containing secondary ligand possessing optoelectrical, Urbach energy and lasing properties. J Chem Sci 135:2. https://doi.org/10.1007/s12039-022-02118-1

    Article  CAS  Google Scholar 

  8. Khatri S, Ahlawat P, Khatkar SP et al (2022) Photophysical, optical and lasing analysis of fluorinated β-keto carboxylate europium (III) complexes. Methods Appl Fluoresc 10:44016

    Article  CAS  Google Scholar 

  9. Redhu S, Singh D, Nehra K et al (2024) Computational and optoelectronic investigations of red-emissive europium (III) β-diketonate with n-donor ligands for display applications. Spectrochim Acta Part A Mol Biomol Spectrosc 315:124307

    Article  CAS  Google Scholar 

  10. Maslennikova VV, Filatov SN, Orlov AV et al (2022) Luminescent coatings based on (3-Aminopropyl) triethoxysilane and europium complex β-Diketophosphazene. Polymers (Basel) 14:728

    Article  CAS  PubMed  Google Scholar 

  11. Dong Z, Song B, Ma H et al (2024) A strategy to enhance the water solubility of luminescent β-diketonate-europium (III) complexes for time-gated luminescence bioassays. Talanta 274:126000

    Article  CAS  PubMed  Google Scholar 

  12. He P, Wang HH, Liu SG et al (2009) Visible-light excitable europium (III) complexes with 2, 7-positional substituted carbazole group-containing ligands. Inorg Chem 48:11382–11387

    Article  CAS  PubMed  Google Scholar 

  13. Ndiaye-Gueye M, Diop A, Gaye PA et al (2022) Syntheses, characterization, and X-ray crystal structure of binuclear lanthanide complexes assembled with Schiff Base and acetate. Earthline J Chem Sci 7:81–95

    CAS  Google Scholar 

  14. Khajuria H, Ladol J, Singh R et al (2017) Surfactant-assisted sacrificial template-mediated synthesis, characterization and photoluminescent properties of LaPO4: Eu3+ phosphor. J Chem Sci 129:753–764

    Article  CAS  Google Scholar 

  15. Yi Z-Q, Fang X-N, Cao Z-Y et al (2019) Preparation, photoluminescence, semiconductor properties, and theoretical calculations for a novel zinc zero-dimensional structure complex. J Chem Res 43:58–62

    Article  CAS  Google Scholar 

  16. Kusrini E, Saleh MI, Adinata D et al (2012) Crystal structure and photoluminescence properties of gadolinium picrate triethylene glycol complex. J Chem Crystallogr 42:859–865

    Article  CAS  Google Scholar 

  17. Raja K, Suseelamma A, Reddy KH (2016) Synthesis, spectral properties and DNA binding and nuclease activity of lanthanide (III) complexes of 2-benzoylpyridine benzhydrazone: X-ray crystal structure, Hirshfeld studies and nitrate-π interactions of cerium (III) complex. J Chem Sci 128:23–35

    Article  CAS  Google Scholar 

  18. Ilmi R, Haque A, Khan MS (2019) Synthesis and photo-physics of red emitting europium complexes: an estimation of the role of ancillary ligand by chemical partition of radiative decay rate. J Photochem Photobiol A Chem 370:135–144

    Article  CAS  Google Scholar 

  19. White KA, Chengelis DA, Gogick KA et al (2009) Near-infrared luminescent lanthanide MOF barcodes. J Am Chem Soc 131:18069–18071

    Article  CAS  PubMed  Google Scholar 

  20. Hooda P, Taxak VB, Malik RK et al (2022) Applicability of reddish-Orange light emitting samarium (III) complexes for biomedical and multifunctional optoelectronic devices. J Fluoresc 32:613–627

    Article  CAS  PubMed  Google Scholar 

  21. Khatri S, Hooda P, Ahlawat P et al (2022) Optoelectronic and biological quantification of semiconducting, crimson europium chelates with fluorinated β-keto acid and N-donor ancillary ligands. Res Chem Intermed 48(4):1685–1716

    Article  CAS  Google Scholar 

  22. Bala M, Kumar S, Devi R et al (2018) Synthesis and photoluminescence properties of europium (III) complexes sensitized with β-diketonato and N, N-donors ancillary ligands. Spectrochim Acta Part A Mol Biomol Spectrosc 196:67–75

    Article  CAS  Google Scholar 

  23. Nunes WDG, do Nascimento ALCS, Moura A et al (2018) Thermal, spectroscopic and antimicrobial activity characterization of some norfloxacin complexes. J Therm Anal Calorim 132:1077–1088

    Article  CAS  Google Scholar 

  24. Marques LF, Marinho MV, Speziali NL et al (2011) Synthesis and crystal structure of a cobalt(II) coordination polymer constructed from 2,6-pyridinedicarboxylate anion and 1,3-bis(4-pyridyl)propane nitrogen ligand. Inorganica Chim Acta 365:454–457

    Article  CAS  Google Scholar 

  25. Refat M, Mohamed G, de Farias R et al (2010) Spectroscopic, thermal and kinetic studies of coordination compounds of Zn (II), cd (II) and hg (II) with norfloxacin. J Therm Anal Calorim 102:225–232

    Article  CAS  Google Scholar 

  26. Refat MS, Mohamed GG (2010) Ti (IV), Cr (III), Mn (II), and Ni (II) complexes of the norfloxacin antibiotic drug: spectroscopic and thermal characterizations. J Chem Eng Data 55:3239–3246

    Article  CAS  Google Scholar 

  27. Ilmi R, Iftikhar K (2012) Pyrazine bridged Ln2 (La, Nd, Eu and Tb) complexes containing fluorinated β-diketone. Inorg Chem Commun 20:7–12

    Article  CAS  Google Scholar 

  28. Wang Y, Zheng X, Zhuang W, ** L (2003) Hydrothermal synthesis and characterization of novel lanthanide 2, 2′-Diphenyldicarboxylate complexes. Eur J Inorg Chem 2003:1355–1360

    Article  Google Scholar 

  29. Souza AP, Alves S Jr, Malta OL (2011) New complexes of europium and gadolinium with 2, 4, 6-trichlorophenyl acetoacetate as ligand. Opt Mater (Amst) 33:402–407

    Article  CAS  Google Scholar 

  30. Nandal P, Khatkar SP, Kumar R et al (2017) Synthesis, optical investigation and biological properties of europium (III) complexes with 2-(4-Chlorophenyl)-1-(2-Hydroxy-4-Methoxyphenyl) Ethan-1-one and ancillary ligands. J Fluoresc 27:1–11

    Article  CAS  PubMed  Google Scholar 

  31. Ahlawat P, Bhayana S, Khatri S et al (2022) Study of Judd–Ofelt, Urbach energy and photosensitization process in luminescent Sm (III) complexes with heterocyclic ligands. Photochem Photobiol Sci:1–24

  32. Zhang A, Zhang J, Pan Q et al (2012) Synthesis, photoluminescence and intramolecular energy transfer model of a dysprosium complex. J Lumin 132:965–971

    Article  CAS  Google Scholar 

  33. Zheng J, Feng J, Cheng Q et al (2015) A novel high color purity yellow luminescent material NaBaBO 3: Sm 3+. Funct Mater Lett 8:1550042

    Article  CAS  Google Scholar 

  34. Kumari P, Khatri S, Kumar M et al (2022) Urbach and Judd-Ofelt analysis of crystalline samarium (III) complexes with β-ketocarboxylate and nitrogen donor secondary ligands. Polyhedron 221:115847

    Article  CAS  Google Scholar 

  35. Schubert EF (2018) Light-emitting diodes. E. Fred Schubert

    Google Scholar 

  36. Hooda P, Lather V, Malik RK et al (2022) Achieving crimson red emission of europium (III) complexes with β-keto acids and ancillary ligands for their applications in optoelectronic devices and biomedical domain. Optik (Stuttg) 264:169389

    Article  CAS  Google Scholar 

  37. Khatri S, Bala M, Hooda P et al (2022) Utilization of Judd-Ofelt theory to assess the photophysical properties of β-keto carboxylate Tb (III) complexes with heterocyclic secondary sensitizer. Opt Mater (Amst) 131:112629

    Article  CAS  Google Scholar 

  38. Khursheed S, Biswas P, Singh VK et al (2019) Synthesis and optical studies of KCaVO4: Sm3+/PMMA nanocomposites. Vacuum 159:414–422

    Article  CAS  Google Scholar 

  39. Liu J-Y, Ren N, Zhang J-J, Zhang C-Y (2013) Preparation, thermodynamic property and antimicrobial activity of some rare-earth (III) complexes with 3-bromo-5-iodobenzoic acid and 1, 10-phenanthroline. Thermochim Acta 570:51–58

    Article  CAS  Google Scholar 

  40. Varshni YP (2022) Band-to-band radiative recombination in groups IV, VI, and III-V semiconductors (I). In: Volume 19, Number 2 February 1. De Gruyter, pp 459–514

  41. Costa JCS, Taveira RJS, Lima CF et al (2016) Optical band gaps of organic semiconductor materials. Opt Mater (Amst) 58:51–60

    Article  CAS  Google Scholar 

  42. Boubaker K (2011) A physical explanation to the controversial Urbach tailing universality. Eur Phys J Plus 126:1–4

    Article  Google Scholar 

  43. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92:1324

    Article  CAS  Google Scholar 

  44. Kadjane P, Charbonnière L, Camerel F et al (2008) Improving visible light sensitization of luminescent europium complexes. J Fluoresc 18:119–129

    Article  CAS  PubMed  Google Scholar 

  45. Francis B, Heering C, Freire RO et al (2015) Achieving visible light excitation in carbazole-based Eu 3+−β-diketonate complexes via molecular engineering. RSC Adv 5:90720–90730

    Article  CAS  Google Scholar 

  46. Zhang X, Zhou F, Shi J, Gong M (2009) Sr3. 5Mg0. 5Si3O8Cl4: Eu2+ bluish–green-emitting phosphor for NUV-based LED. Mater Lett 63:852–854

    Article  CAS  Google Scholar 

  47. Beltaif M, Dammak M, Megdiche M, Guidara K (2016) Synthesis, optical spectroscopy and Judd–Ofelt analysis of Eu3+ doped Li2BaP2O7 phosphors. J Lumin 177:373–379

    Article  CAS  Google Scholar 

  48. Al-Busaidi IJ, Ilmi R, Dutra JDL et al (2021) Utilization of a Pt (ii) di-yne chromophore incorporating a 2, 2′-bipyridine-5, 5′-diyl spacer as a chelate to synthesize a green and red emitting d–f–d heterotrinuclear complex. Dalt Trans 50:1465–1477

    Article  CAS  Google Scholar 

  49. Nakamura K, Hasegawa Y, Kawai H et al (2006) High lasing oscillation efficiency of Eu (III) complexes having remarkably sharp emission band. J Alloys Compd 408:771–775

    Article  Google Scholar 

  50. Dar WA, Ganaie AB, Iftikhar K (2018) Synthesis and photoluminescence study of two new complexes [Sm (hfaa) 3 (impy) 2] and [Eu (hfaa) 3 (impy) 2] and their PMMA based hybrid films. J Lumin 202:438–449

    Article  CAS  Google Scholar 

  51. Neese F (2006) Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012)

  52. Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:1–17

    Article  Google Scholar 

  53. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113. https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

  54. Dalal A, Nehra K, Hooda A et al (2022) Synthesis, photophysical characteristics and geometry optimization of Tris (2-benzoylacetophenonate) europium complexes with 2, 2′-Bipyridine derivatives. J Lumin 247:118873

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Manoj Kumar one of the authors gratefully acknowledges the Department of Chemistry and UIET, M.D. University Rohtak for providing instrumental facilities.

Code Availability

No software or any computational study was not used in this study.

Funding

Manoj Kumar, one of the authors is thankful for the financial support from University Research Scholarship (URS) MDU, Rohtak letter no. R&S/R-12/22/URS/5939 to complete this work.

Author information

Authors and Affiliations

Authors

Contributions

M. K.: Investigation, Formal analysis, Writing - original draft. P. A.: Writing - review & editing. P. K., A. K.: Contribution in analysis. V. L., H. S.: Contributed in investigation. R. K.: Supervision, Writing - review & editing.

Corresponding author

Correspondence to Rajesh Kumar.

Ethics declarations

Ethics Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflicts of Interest/Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 25 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Ahlawat, P., Kumari, P. et al. Preparation and Judd-Ofelt Analysis of Warm Red Luminescent Eu3+ Complexes for Semiconductor Lasing Devices. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03780-z

Keywords

Navigation