Log in

Recent Advances in Organic Small-Molecule Fluorescent Probes for the Detection of Zinc Ions (Zn2+)

  • Review
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Zinc(II) ions (Zn2g) play crucial roles in the growth, propagation, and metabolism of animals, plants, and humans. Abnormal concentrations of Zn2+ in the environment and living organisms pose potential risks to environmental protection and human health. Therefore, it is imperative to develop rapid, reliable and in-situ detection methods for Zn2+ in both environmental and biological contexts. Furthermore, effective analytical methods are required for diagnosing diseases and understanding physiological metabolic mechanisms associated with Zn2+ concentration levels. Organic small-molecule fluorescent probes offer advantages such as fast, reliable, convenient, non-destructive detection capabilities and have significant application potential in Zn2+ detection and bioimaging; thus garnering extensive attention. Over the past two years alone, various organic small-molecule probes for Zn2+ based on different detection mechanisms and fluorophores have been rapidly developed. However, these probes still exhibit several limitations that need further resolution. In light of this context, we provide a comprehensive summary of the detection mechanisms, performance characteristics, and application scope of Zn2+ fluorescence probes since year 2022 while highlighting their advantages. We also propose solutions to address existing issues with these probes and outline future directions for their advancement. This review aims to serve as a valuable reference source offering insights into the development of advanced organic small-molecule-based fluorescence probes specifically designed for detecting Zn2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data Availability

Data is provided within the manuscript or supplementary information files.

References

  1. Priebatsch KM, Kvansakul M, Poon IKH, Hulett MD (2017) Functional regulation of the plasma protein histidine-rich glycoprotein by Zn2+ in settings of tissue Injury. Biomolecules 7(1):22. https://doi.org/10.3390/biom7010022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garapati S, Monteith W, Wilson C, Kostenko A, Kenney JM, Danell AS (2018) Burns, Zn2+-binding in the glutamate-rich region of the intrinsically disordered protein prothymosin-alpha. J Biol Inorg Chem 23(8):1255–1263. https://doi.org/10.1007/s00775-018-1612-2

    Article  CAS  PubMed  Google Scholar 

  3. Billur D, Tuncay E, Okatan EN, Olgar Y, Durak AT, Degirmenci S, Can B, Turan B (2016) Interplay between Cytosolic Free Zn2+ and Mitochondrion Morphological changes in Rat Ventricular cardiomyocytes. Biol Trace Elem Res 174(1):177–188. https://doi.org/10.1007/s12011-016-0704-5

    Article  CAS  PubMed  Google Scholar 

  4. Anson KJ, Corbet GA, Palmer AE (2021) Zn2+ influx activates ERK and akt signaling pathways. P Natl Acad Sci USA 118(11):e2015786118. https://doi.org/10.1073/pnas.2015786118

    Article  CAS  Google Scholar 

  5. Hennigar SR, Kelleher SL (2012) Zinc networks: the cell-specific compartmentalization of zinc for specialized functions. Biol Chem 393(7):565–578. https://doi.org/10.1515/hsz-2012-0128

    Article  CAS  PubMed  Google Scholar 

  6. Levaot N, Hershfinkel M (2018) How cellular Zn2+ signaling drives physiological functions. Cell Calcium 75:53–63. https://doi.org/10.1016/j.ceca.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  7. Verze P, Cai T, Lorenzetti S (2016) The role of the prostate in male fertility, health and disease. Nat Rev Urol 13(7):379–386. https://doi.org/10.1038/nrurol.2016.89

    Article  CAS  PubMed  Google Scholar 

  8. Wu WD, Bromberg PA, Samet JM (2013) Zinc ions as effectors of environmental oxidative lung injury. Free Radical Bio Med 65:57–69. https://doi.org/10.1016/j.freeradbiomed.2013.05.048

    Article  CAS  Google Scholar 

  9. Liao BH, Liu HY, Zeng QE, Yu PZ, Probst A, Probst JL (2005) Complex toxic effects of Cd2+, Zn2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L). Environ Int 31(6):891–895. https://doi.org/10.1016/j.envint.2005.05.029

    Article  CAS  PubMed  Google Scholar 

  10. Wang YM, Wang P, Hao XZ, Zhou DM, Li JZ (2017) Effect of different nitrogen forms on the toxicity of Zn in wheat seedling root: a modeling analysis. Environ Sci Pollut R 24(23):18896–18906. https://doi.org/10.1007/s11356-017-9495-2

    Article  CAS  Google Scholar 

  11. Ao D, Lei Z, Dzakpasu M, Chen R (2019) Role of divalent metals Cu2+ and Zn2+ in proliferation and production of toxic microcystins. Toxicon 170:51–59.https://doi.org/10.1016/j.toxicon.2019.09.012

    Article  CAS  PubMed  Google Scholar 

  12. Lilay GH, Persson DP, Castro PH, Liao FX, Alexander RD, Aarts MGM, Assunçao AGL (2021) Arabidopsis bZIP19 and bZIP23 act as zinc sensors to control plant zinc status. Nat Plants 7(2):137–143. https://doi.org/10.1038/s41477-021-00856-7

    Article  CAS  PubMed  Google Scholar 

  13. Chen X, Yu HN, Shen SR, Yin JJ (2007) Role of Zn2+ in epigallocatechin gallate affecting the growth of PC-3 cells. J Trace Elem Med Bio 21(2):125–131. https://doi.org/10.1016/j.jtemb.2006.12.007

    Article  CAS  Google Scholar 

  14. Zhang XA, Yin KY, Huo RP, Wang ZM, Fan S, Ma QP, Wang LW, Zhai S, Wang JY (2023) Phytotoxic effects of different concentrations of Zinc Species on Lettuce. Water Air Soil Poll 234(9):569. https://doi.org/10.1007/s11270-023-06554-8

    Article  CAS  Google Scholar 

  15. Zlobin IE, Pashkovskiy PP, Kartashov AV, Nosov AV, Fomenkov AA, Kuznetsov VV (2020) The relationship between cellular zn status and regulation of Zn homeostasis genes in plant cells. Environ Exp Bot 176:104104. https://doi.org/10.1016/j.envexpbot.2020.104104

    Article  CAS  Google Scholar 

  16. Dhanasekaran K, Napoleon AA (2024) Pyrazine 2-carbohydrazide colorimetric and ratiometric for the visual detection of zinc ions; application of pharmaceutical samples, and DFT analysis. Inorg Chem Commun 161:112117. https://doi.org/10.1016/j.inoche.2024.112117

    Article  CAS  Google Scholar 

  17. Chaiyo S, Mehmeti E, Zagar K, Siangproh W, Chailapakul O, Kalcher K (2016) Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode. Anal Chim Acta 918:26–34. https://doi.org/10.1016/j.aca.2016.03.026

    Article  CAS  PubMed  Google Scholar 

  18. Ghaedi M, Ahmadi F, Shokrollahi A (2007) Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater 142(1–2):272–278. https://doi.org/10.1016/j.jhazmat.2006.08.012

    Article  CAS  PubMed  Google Scholar 

  19. Khorrami AR, Fakhari AR, Shamsipur M, Naeimi H (2009) Pre-concentration of ultra trace amounts of copper, zinc, cobalt and nickel in environmental water samples using modified C18 extraction disks and determination by inductively coupled plasma-optical emission spectrometry. Int J Environ Ch 89(5):319–329. https://doi.org/10.1080/03067310802549953

    Article  CAS  Google Scholar 

  20. Liu YN, Feng XH, Yu YN, Zhao QY, Tang CH, Zhang JM (2020) A review of bioselenol-specific fluorescent probes: synthesis, properties, and imaging applications. Anal Chim Acta 1110:141–150. https://doi.org/10.1016/j.aca.2020.03.027

    Article  CAS  PubMed  Google Scholar 

  21. Zou Z, Luo ZL, Xu X, Yang S, Qing ZH, Liu JW, Yang R (2020) Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. Trac-Trend Anal Chem 125:115811. https://doi.org/10.1016/j.trac.2020.115811

    Article  CAS  Google Scholar 

  22. Huang YA, Cao XB, Deng YW, Ji XY, Sun WN, **a SY, Wan S, Zhang HX, **ng RL, Ding J, Ren CG (2024) An overview on recent advances of reversible fluorescent probes and their biological applications. Talanta 268:125275. https://doi.org/10.1016/j.talanta.2023.125275

    Article  CAS  PubMed  Google Scholar 

  23. Liu HW, Chen LL, Xu CY, Li Z, Zhang HY, Zhang XB, Tan WH (2018) Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 47(18):7140–7180. https://doi.org/10.1039/c7cs00862g

    Article  CAS  PubMed  Google Scholar 

  24. Qi YL, Wang HR, Chen LL, Duan YT, Yang SY, Zhu HL (2022) Recent advances in small-molecule fluorescent probes for studying ferroptosis. Chem Soc Rev 51(18):7752–7778. https://doi.org/10.1039/d1cs01167g

    Article  CAS  PubMed  Google Scholar 

  25. Wang K, Liu CY, Zhu HC, Zhang Y, Su MJ, Wang X, Liu MY, Rong XD, Zhu BC (2023) Recent advances in small-molecule fluorescent probes for diagnosis of cancer cells/tissues. Coordin Chem Rev 477:214946. https://doi.org/10.1016/j.ccr.2022.214946

    Article  CAS  Google Scholar 

  26. Chan J, Dodani SC, Chang CJ (2012) Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem 4(12):973–984. https://doi.org/10.1038/Nchem.1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang F, Wang KJ, Kong Q, Wang J, ** DZ, Gu BW, Lu S, Wei TW, Chen XQ (2021) Recent studies focusing on the development of fluorescence probes for zinc ion. Coordin Chem Rev 429:213636. https://doi.org/10.1016/j.ccr.2020.213636

    Article  CAS  Google Scholar 

  28. Yu JH, Yu HT, Wang SS, Qi YY (2024) Progress in research of zinc ion fluorescent probes for biological imaging. J Lumin 266:120318.https://doi.org/10.1016/j.jlumin.2023.120318

    Article  CAS  Google Scholar 

  29. Wen JR, Hua QY, Ding S, Sun AK, **a Y (2023) Recent advances in fluorescent probes for zinc ions based on various response mechanisms. Crit Rev Anal Chem. https://doi.org/10.1080/10408347.2023.2238078

    Article  PubMed  Google Scholar 

  30. Huang S, Yang BZ, Tu SW (2022) A theoretical investigation of a series of zinc ion responsive fluorescent probes based on 8-aminoquinoline. Comput Theor Chem 1210:113647. https://doi.org/10.1016/j.comptc.2022.113647

    Article  CAS  Google Scholar 

  31. Aydin D, Elmas SNK, Savran T, Arslan FN, Sadi G, Yilmaz I (2021) An ultrasensitive OFF-ONfluorogenic sensor based on thiazole derivative for Zn2+: food supplement, water and bio-imaging applications. J Photoch Photobio A 419:113459. https://doi.org/10.1016/j.jphotochem.2021.113459

    Article  CAS  Google Scholar 

  32. Qian F, Zhang CL, Zhang YM, He WJ, Gao X, Hu P, Guo ZJ (2009) Visible light excitable Zn2+ fluorescent sensor derived from an intramolecular charge transfer fluorophore and its in Vitro and in vivo application. J Am Chem Soc 131(4):1460–1468. https://doi.org/10.1021/ja806489y

    Article  CAS  PubMed  Google Scholar 

  33. Tang LH, Dong Y, Cui MX, Yao N, Wang Y (2024) A triphenylamine based fluorescent probe for Zn2 + detection and its applicability in live cell imaging. Polyhedron 248:116759. https://doi.org/10.1016/j.poly.2023.116759

    Article  CAS  Google Scholar 

  34. Wen JR, **a Y, Ding S, Liu YJ (2023) Theoretical investigation of the Zn2+ detection mechanism based on the quinoline derivative of the Schiff-base receptor. Spectrochim Acta A 287:122123. https://doi.org/10.1016/j.saa.2022.122123

    Article  CAS  Google Scholar 

  35. Ding YB, Li X, Li T, Zhu WH, **e YS (2013) α-Monoacylated and α,α′- and α,β′-Diacylated dipyrrins as highly sensitive fluorescence turn-on Zn2+ probes. J Org Chem 78(11):5328–5338. https://doi.org/10.1021/jo400454e

    Article  CAS  PubMed  Google Scholar 

  36. Vidya B, Sivaraman G, Sumesh RV, Chellappa D (2016) Fluorescein-based turn on’’ fluorescence detection of Zn2+ and its applications in imaging of Zn2+ in apoptotic cells. Chemistryselect 1(13):4024–4029. https://doi.org/10.1002/slct.201600863

    Article  CAS  Google Scholar 

  37. Xu HX, Zhu CC, Chen YC, Bai Y, Han Z, Yao SK, Jiao Y, Yuan H, He WJ, Guo ZJ (2020) A FRET-based fluorescent Zn2+ sensor: 3D ratiometric imaging, flow cytometric tracking and cisplatin-induced Zn2+ fluctuation monitoring. Chem Sci 11(40):11037–11041. https://doi.org/10.1039/d0sc03037f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bai QH, **a Y, Liang GY, Wang CH, Redshaw C, **ao X (2023) Novel fluorescent probe for sequential recognition of Zn2+ and pyrophosphate in aqueous based on aggregation-induced emission. Spectrochim Acta A 295:122585. https://doi.org/10.1016/j.saa.2023.122585

    Article  CAS  Google Scholar 

  39. Kauno JG, Zhao YQ, Feng JC, Wang TL, Chen YB, **e HB, Xue SF, Guo YN (2022) Coordination polymerization-Induced Emission based on a Salicylaldehyde Hydrazone AIEgen toward Zn2+ detection. Cryst Growth Des 22(11):6564–6574. https://doi.org/10.1021/acs.cgd.2c007856564

    Article  CAS  Google Scholar 

  40. Rani BK, John SA (2020) Selective receptor for Fe(III) ion with a fluorescence-ON pyrene motif in semi-aqueous solution. J Photoch Photobio A 392:112426. https://doi.org/10.1016/j.jphotochem.2020.112426

    Article  CAS  Google Scholar 

  41. Yu K, Zhang GY, Chai HN, Qu LJ, Shan D, Zhang XJ (2022) Two-stage ligand exchange in Mn(III)-based porphyrinic metal-organic frameworks for fluorescence water sensing. Sens Actuat B-Chem 362:131808. https://doi.org/10.1016/j.snb.2022.131808

    Article  CAS  Google Scholar 

  42. Lu XM, Wu MY, Wang SW, Qin JC, Li PY (2022) An AIE/PET-based fluorescent probe for Zn2+/Al3+detection and its application in fluorescence-assisted diagnosis for prostate cancer. Dyes Pigm 203:110372. https://doi.org/10.1016/j.dyepig.2022.110372

    Article  CAS  Google Scholar 

  43. Yang S, Huang YC, Lu AD, Wang ZW, Li HY (2023) Selective and sensitive sequential recognition probe Zn2+ and H2PO4 based on Chiral Thiourea Schiff Base. Molecules 28(10):4166. https://doi.org/10.3390/molecules28104166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hoque A, Islam MS, Khan MA, Ghosh S, Sekh MA, Hussain S, Alam MA (2022) Biphenyl-containing amido Schiff base derivative as a turn-on fluorescent chemosensor for Al3+ and Zn2+ ions. New J Chem 46(33):16025–16034. https://doi.org/10.1039/d2nj03144b

    Article  CAS  Google Scholar 

  45. Luo R, Yang D, Xu CG, Zhang DM, Li NN, Fan YH, Zhang X (2023) A multifunctional off-on fluorescence probe for Al3+, Zn2+ and La3+ detection and cellular imaging applications. J Iran Chem Soc 20(2):361–369. https://doi.org/10.1007/s13738-022-02672-y

    Article  CAS  Google Scholar 

  46. Anitha O, Aiswarya J, Thiruppathiraja T, Lakshmipathi S, Malecki JG, Murugesapandian B (2023) An AIE active acidochromic pyrimidine-functionalized two-in-one fluorescent probe for selective relay detection of Al3+/Zn2+ and PPi with various detection applications. New J Chem 47(39):18461–18475. https://doi.org/10.1039/d3nj03379a

    Article  CAS  Google Scholar 

  47. Dathees TJ, Narmatha G, Prabakaran G, Seenithurai S, Chai JD, Kumar RS, Prabhu J, Nandhakumar R (2024) Salicylaldehyde built fluorescent probe for dual sensing of Al3+, Zn2+ ions: applications in latent fingerprint, bio-imaging & real sample analysis. Food Chem 441:138362. hhttps://doi.org/10.1016/j.foodchem.2024.138362

    Article  CAS  Google Scholar 

  48. Mahato M, Tohora N, Rahman Z, Sultana T, Ghanta S, Das SK (2022) A benzoxazole-based smart molecule for relay detection of zinc and phosphate ions and its implication towards molecular logic gate constructions. J Photoch Photobio A 432:114113. https://doi.org/10.1016/j.jphotochem.2022.114113

    Article  CAS  Google Scholar 

  49. Kim H, Gil D, Kim C (2022) Selective fluorescent detection of Zn2+ by a rhodanine-based chemosensor. J Chin Chem Soc-Taip 69(5):856–863. https://doi.org/10.1002/jccs.202200108

    Article  CAS  Google Scholar 

  50. Wang HZ, Yang T, Ni SF, **e ZF, Chang GJ (2022) A Turn-On fluorescent probe for detection and removal of Zn2+ in aqueous and its application in living cells. Spectrochim Acta A 280:121501. https://doi.org/10.1016/j.saa.2022.121501

    Article  CAS  Google Scholar 

  51. Chourasia J, Tohora N, Mahato M, Sultana T, Ahamed S, Maiti A, Ghanta S, Das SK (2024) A sulfone-based fluorogenic probe for cascade detection of Zn2+ and PO43 ions. J Mol Struct 1304:137736. https://doi.org/10.1016/j.molstruc.2024.137736

    Article  CAS  Google Scholar 

  52. Megha V, Kumar P, Kaur K, Singh (2023) Julolidine-hydrazone based Chemosensor for detection of Zn2+: fluorescent in situ formed Zn2+ complex discriminates PPi from ADP and ATP. Anal Chim Acta 1240:340758. https://doi.org/10.1016/j.aca.2022.340758

    Article  CAS  PubMed  Google Scholar 

  53. Man LL, Wang TL, Liu K, Hou X, Wang ZX, Tong L, Dong WK (2024) A novel dual-functional half salamo-based fluorescent turn-on sensor for selectively recognition and differentiation of Zn2+ and Al3+ ions. J Mol Struct 1303:137586. https://doi.org/10.1016/j.molstruc.2024.137586

    Article  CAS  Google Scholar 

  54. Das GC, Das AK, Das D, Maity TR, Samanta A, Alasmary FA, Almalki AS, Iqbal A, Dolai M (2023) Ortho-Vanillin based multifunctional scaffold for selective detection of Al3+ and Zn2+ employing molecular logic with DFT study and cell imaging with live grass pea. J Photoch Photobio A 440:114663. https://doi.org/10.1016/j.jphotochem.2023.114663

    Article  CAS  Google Scholar 

  55. Li N, Li M, Shao F, Luo R, Gao Q, Zhao Y, Li R (2023) A turn-on Schiff base fluorescent probe for recognizing Zn2+ and its application in indictor and imaging of zebrafish. J Photoch Photobio A 443:114871. https://doi.org/10.1016/j.jphotochem.2023.114871

    Article  CAS  Google Scholar 

  56. Patil M, Park SJ, Yeom GS, Bendre R, Kuwar A, Nimse SB (2022) Fluorescence ‘turn-on’ probe for nanomolar zn(II) detection in living cells and environmental samples. New J Chem 46(28):13774–13782. https://doi.org/10.1039/d2nj02012b

    Article  CAS  Google Scholar 

  57. Park SJ, Patil M, Yeom GS, Bendre R, Kuwar A, Nimse SB (2023) A dual-function fluorescence ‘turn-on’ probe that allows zn (II) bioimaging and quantification of water in the organic solvent. Methods 218:84–93. https://doi.org/10.1016/j.ymeth.2023.07.009

    Article  CAS  PubMed  Google Scholar 

  58. Bag R, Sikdar Y, Sahu S, Islam M, Mandal S, Goswami S (2022) Benzimidazole-acid hydrazide Schiff-Mannich combo ligands enable the nano-molar detection of Zn2+ in semi-aqueous media, HuH-7 cells, and plants via a fluorescence turn-on mode. New J Chem 46(33):16161–16171. https://doi.org/10.1039/d2nj02875a

    Article  CAS  Google Scholar 

  59. Fan J, Liu XM, Sun P, Su H, Sun Y, Li QZ, **e CZ, Xu JY (2024) A novel multi-functional fluorescence probe for the detection of Al3+/Zn2+ /Cd2+ and its practical applications. J Fluoresc. https://doi.org/10.1007/s10895-024-03589-w

    Article  PubMed  Google Scholar 

  60. Shruthi B, Revanasiddappa HD, Shivamallu C, Iqbal M, Amachawadi RG, Majani SS, Kollur SP (2023) Highly selective fluorescent and colorimetric methylphenyl-based sensor towards Zn2+ ion detection: Synthesis, X-ray crystallography and selectivity studies. Inorg Chim Acta 556:121614. https://doi.org/10.1016/j.ica.2023.121614

    Article  CAS  Google Scholar 

  61. Karuppusamy P, Vijayakumar V, Sarveswari S (2023) Salicylaldehyde appended tris buffer: a fluorescent Schiff’s base receptor for ‘turn-on’ recognition of Zn2+in semi-aqueous medium. Inorg Chem Commun 156:111080. https://doi.org/10.1016/j.inoche.2023.111080

    Article  CAS  Google Scholar 

  62. Dong WK, Zhang JQ, Du MX (2022) A highly selective and sensitive salamo-salen-salamo hybrid fluorometic chemosensor for identification of Zn2+ and the continuous recognition of phosphate anions. Spectrochim Acta A 278:121340. https://doi.org/10.1016/j.saa.2022.121340

    Article  CAS  Google Scholar 

  63. Naskar B, Mukhopadhyay CD, Goswami S (2022) A new diformyl phenol based Chemosensor selectively detects Zn2+ and Co2+ in the nanomolar range in 100% aqueous medium and HCT live cells. New J Chem 46(24):11946–11955. https://doi.org/10.1039/d2nj01478e

    Article  CAS  Google Scholar 

  64. Kumar V, Singh D, Kumar P, Chaudhary G, Singh APP, Gupta R (2022) Turn-on fluorescent detection of nickel and zinc ions by two related chemosensors containing naphthalimide ring(s). J Mol Struct 1261:132901. https://doi.org/10.1016/j.molstruc.2022.132901

    Article  CAS  Google Scholar 

  65. Navale GR, Rana A, Saini S, Singh S, Saini R, Chaudhary VK, Roy P, Ghosh K (2023) An efficient fluorescence chemosensor for sensing Zn(II) ions and applications in cell imaging and detection of zn(II) induced aggregation of PrP(106–126) peptide. J Photoch Photobio A 441:114703. https://doi.org/10.1016/j.jphotochem.2023.114703

    Article  CAS  Google Scholar 

  66. Feng LC, Li XX, Chen R, Man LL, Dong WK (2023) A fluorescent off-on-off probe based on a new bis(salamo)-like compound for the sensitive and rapid detection of phosphates. J Mol Struct 1289:135941. https://doi.org/10.1016/j.molstruc.2023.135941

    Article  CAS  Google Scholar 

  67. Aydin Z, Keskinates M, Yilmaz B, Bayrakci M (2023) An isonicotinohydrazide based fluorescence sensor for detection of Zn2+ in biological systems: experimental and theoretical studies along with cell imagine. Inorg Chim Acta 557:121680. https://doi.org/10.1016/j.ica.2023.121680

    Article  CAS  Google Scholar 

  68. Mohafuza Khatun PG, Mandal J, Chowdhury SG, Karmakar P, Saha A (2024) Design and synthesis of a hydrazinopthalazine derived chemosensor to detect metal ions Zn2+, Al3+ via CHEF effect with biological study and theoretical calculation. J Photoch Photobio A 446:115145. https://doi.org/10.1016/j.jphotochem.2023.115145

    Article  CAS  Google Scholar 

  69. Arabahmadi R (2022) Antipyrine-based Schiff base as fluorogenic chemosensor for recognition of Zn2+, Cu2+ and H2PO4 in aqueous media by comparator, half subtractor and integrated logic circuits. J Photoch Photobio A 426:113762. https://doi.org/10.1016/j.jphotochem.2021.113762

    Article  CAS  Google Scholar 

  70. Maity MB, Bhunia S, Patra A, Sahoo P, Mishra S, Sinha C (2023) Use of diformyl-triazolo Schiff base for Zn2+ sensing and intracellular live cell imaging. Appl Organomet Chem 37(8):113762. https://doi.org/10.1002/aoc.7179

    Article  CAS  Google Scholar 

  71. Karthick KA, Kaleeswari K, Maheswari CU, Sivaraman G, Shankar B, Tamilselvi A (2022) Novel pyridoxal based molecular sensor for selective turn-on fluorescent switching functionality towards Zn(II) in live cells. J Photoch Photobio A 428:113861. https://doi.org/10.1016/j.jphotochem.2022.113861

    Article  CAS  Google Scholar 

  72. Karthick KA, Shankar B, Gayathri S, Aravind MK, Ashokkumar B, Tamilselvi A (2023) Dual responsive pyridoxal-AHMT based fluorescent sensor towards zinc(ii) and mercury(ii) ions and its bioimaging application. New J Chem 47(19):9427–9439. https://doi.org/10.1039/d3nj00890h

    Article  CAS  Google Scholar 

  73. Mandal J, Jana NC, Chowdhury SG, Karmakar P, Saha A (2023) Two pyridoxal derived Schiff base chemosensors design for fluorescence sensing of Zn2+ion in aqueous medium. Inorg Chem Commun 156:111217. https://doi.org/10.1016/j.inoche.2023.111217

    Article  CAS  Google Scholar 

  74. Kumar A, Upadhyay Y, Bera RK, Sahoo SK (2023) Fluorescent Turn-On sensing of zinc(II) and Alkaline phosphatase activity using a Pyridoxal-5’-Phosphate derived Schiff Base. J Fluoresc 33(6):2469–2478. https://doi.org/10.1007/s10895-023-03254-8

    Article  CAS  PubMed  Google Scholar 

  75. **ng YJ, Guo CX, Guo XC, Liu YY, Wei KH, Kang MY, Yang XF, Pei MS, Zhang GY (2023) Thiophene-derived off-on-off fluorescence chemosensors for the detection of zinc and phytate ions sequentially. J Photoch Photobio A 442:114797. https://doi.org/10.1016/j.jphotochem.2023.114797

    Article  CAS  Google Scholar 

  76. Dong YW, Wang Y, Song Y, Yu Z, Yu Z, Zhao Z, Wang LY (2024) A simple and Rapid Quinoline Schiff Base as a fluorescent probe for Zn2+ and its application in Test strips. Chemistryselect 9(9):e202400389. https://doi.org/10.1002/slct.202400389

    Article  CAS  Google Scholar 

  77. Ding YJ, Zhao CX, Zhang PC, Chen YH, **e JP, Song WW, Liu ZC, Liu GL, Zheng XY (2023) A dual-functional chemosensor based on acylhydrazone derivative for rapid detection of zn (II) and mg(II): spectral properties, recognition mechanism and application studies. Arab J Chem 16(4):104603. https://doi.org/10.1016/j.arabjc.2023.104603

    Article  CAS  Google Scholar 

  78. Mao LT, Ding HC, Li XM, Liu G, Pu SZ (2022) A diarylethene-based fluorescent chemosensor for highly selective recognition of Zn2+ and its application. J Photoch Photobio A 431:114011. https://doi.org/10.1016/j.jphotochem.2022.114011

    Article  CAS  Google Scholar 

  79. Kong MJ, **ng FF, Zhu SR (2022) A new tripodal 8-hydroxyquinoline as a high sensitivity fluorescence sensor for Zn(II) in ethanol and its two morphology in solid. Inorg Chem Commun 141:109530. https://doi.org/10.1016/j.inoche.2022.109530

    Article  CAS  Google Scholar 

  80. Kolbus A, Uchacz T, Danel A, Galczynska K, Moskwa P, Kolek P (2024) Fluorescent Sensor based on 1H-Pyrazolo[3,4-b]quinoline derivative for detecting Zn2+ cations. Molecules 29(4):823. https://doi.org/10.3390/molecules29040823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Promchat A, Praneenararat T, Jiamvijitkul P, Senpradit Y, Sukwattanasinitt M (2023) Paper-based fluorescent sensors from quinoline ligands for distance-based quantification of Zn2+. Sens Actuat B-Chem 396:134522. https://doi.org/10.1016/j.snb.2023.134522

    Article  CAS  Google Scholar 

  82. Zhang Z, Zou Y, Liu JH (2024) A single 8-hydroxyquinoline-appended bile acid fluorescent probe obtained by click chemistry for solvent-dependent and distinguishable sensing of zinc(II) and cadmium(II). Luminescence 39(1).   https://doi.org/10.1002/bio.4610

    Article  PubMed  Google Scholar 

  83. Kim H, Lee M, Lee JJ, Min EK, Kim KT, Kim C (2022) A solvent-dependent dual chemosensor for detecting Zn2+ and Hg2+ based on thiophene and thiourea functional groups by fluorescence turn-on. J Photoch Photobio A 428:113882. https://doi.org/10.1016/j.jphotochem.2022.113882

    Article  CAS  Google Scholar 

  84. Lee M, Moon S, Gil D, Kim C (2023) A novel fluorescent turn-on probe based on thiosemicarbazide-naphthalene for selectively detecting Zn2+. Korean J Chem Eng 40(8):2010–2016. https://doi.org/10.1007/s11814-023-1464-5

    Article  CAS  Google Scholar 

  85. Li YY, Song RJ, Zhao JC, Liu YC, Zhao JY (2023) Synthesis, structure, and properties of a novel naphthalene-derived fluorescent probe for the detection of Zn2+. Polyhedron 234:116336. https://doi.org/10.1016/j.poly.2023.116336

    Article  CAS  Google Scholar 

  86. Naithani S, Goswami N, Singh S, Yadav V, Kumar S, Kumar P, Kumar A, Goswami T, Kumar S (2023) Turn-on detection of Al3+ and Zn2+ ions by a NSN donor probe: reversibility, logic gates and DFT calculations. Anal Methods-Uk 15(44):6021–6030. https://doi.org/10.1039/d3ay01534c

    Article  CAS  Google Scholar 

  87. Wang HZ, Guo YY, Tang Y, Tang QL, Yin SJ, **e ZF, Chang GJ (2024) The design of multifunctional fluorescent probe for detecting Zn2+/ ClO/H2O and application in high-security level information encryption. Dyes Pigm 223:111909. https://doi.org/10.1016/j.dyepig.2023.111909

    Article  CAS  Google Scholar 

  88. Nie W, Yang J, Wu JH, Hu L (2022) Synthesis and photophysical properties of vice-like 1,8-naphthalimide fluorescent sensor for sensitive detection of Mn2+ and Zn2+. J Photoch Photobio A 430:113951. https://doi.org/10.1016/j.jphotochem.2022.113951

    Article  CAS  Google Scholar 

  89. Ahmad T, Abdel-Azeim S, Khan S, Ullah N (2022) Turn-on fluorescent sensors for nanomolar detection of zinc ions: synthesis, properties and DFT studies. J Taiwan Inst Chem E 139:104507. https://doi.org/10.1016/j.jtice.2022.104507

    Article  CAS  Google Scholar 

  90. Zhang Y, Qu WJ, Yang JH, Jia LH, Li L, Cao HJ, Guo XF (2022) Cd2+ and Zn2+ fluorescence turn-on sensing and the subsequent detection of S2 by a quinolimide-based sensor in water and living cells with application in the combinational logic gate. Tetrahedron 121:132916. https://doi.org/10.1016/j.tet.2022.132916

    Article  CAS  Google Scholar 

  91. **ang DS, Zhang SZ, Wang Y, Sun KJ, Xu HY (2022) A novel naphthalimide-based turn-on fluorescent chemosensor for highly selective detection of Zn2+. Tetrahedron 106:132648. https://doi.org/10.1016/j.tet.2022.132648

    Article  CAS  Google Scholar 

  92. Han YZ, Tian G, Yang Q (2023) Two colorimetric and ratiometric fluorescence sensors for Zn2+ with 1,10-phenanthroline derivatives. Inorg Chem Commun 155:111105. https://doi.org/10.1016/j.inoche.2023.111105

    Article  CAS  Google Scholar 

  93. Tian G, Han YZ, Yang Q (2023) 1, 10-phenanthroline derivative as colorimetric and ratiometric fluorescence probe for Zn2+ and Cd2+. Results Chem 5:100899. https://doi.org/10.1016/j.rechem.2023.100899

    Article  CAS  Google Scholar 

  94. Tian G, Han YZ, Yang Q (2022) Phenanthroline-based ligand scaffold as an efficient colorimetric and ratiometric fluorescence probe for Zn2+ and Cd2+ ion detection. Inorg Chem Commun 146:110187. https://doi.org/10.1016/j.inoche.2022.110187

    Article  CAS  Google Scholar 

  95. Singh D, Ibrahim A, Kumar P, Gupta R (2022) Methylene Spacer Mediated Detection Switch between Copper and zinc ions by two coumarin-pyrene based chemosensors. Chemistryselect 7(32):e202202574. https://doi.org/10.1002/slct.202202574

    Article  CAS  Google Scholar 

  96. Paul S, Maity S, Halder S, Dutta B, Jana S, Jana K, Sinha C (2022) Idiosyncatic recognition of Zn2+ and CN using pyrazolyl-hydroxy-coumarin scaffold and live cell imaging: depiction of luminescent zn(II)-metallocryptand. Dalton T 51(8):3198–3212. https://doi.org/10.1039/d1dt03654h

    Article  CAS  Google Scholar 

  97. Singh D, Tomar S, Singh S, Chaudhary G, Singh AP, Gupta R (2023) A fluorescent pH switch probe for the ‘turn-on’ dual-channel discriminative detection of magnesium and zinc ions. J Photoch Photobio A 435:114334. https://doi.org/10.1016/j.jphotochem.2022.114334

    Article  CAS  Google Scholar 

  98. Mei X, Luo WT, Li H, Pu SZ (2023) Synthesis and photophysical investigation of Schiff base as a Mg2+ and Zn2+ fluorescent chemosensor and its application. Luminescence 38(3):250–259. https://doi.org/10.1002/bio.4443

    Article  CAS  PubMed  Google Scholar 

  99. Hashemi SM, Moradi SE, Ahangar RM, Farmanzadeh D, Emami S (2023) Synthesis, sensing performance and DFT studies of a Novel coumarin-based Schiff Base as a turn-on fluorescence probe for Zinc Ion Detection. J Fluoresc. https://doi.org/10.1007/s10895-023-03510-x

    Article  PubMed  Google Scholar 

  100. Pu YQ, Yu XZ, Yu MH, Zhao ZJ, An Y (2023) Development of two efficient dual-function fluorescent probes for specific recognition of Zn2+/H2S. Chemistryselect 8(8):e202204458. https://doi.org/10.1002/slct.202204458

    Article  CAS  Google Scholar 

  101. Singh A, Yadav P, Singh S, Kumar P, Srikrishna S, Singh VP (2023) A multifunctional coumarin-based probe for distinguishable detection of Cu2+ and Zn2+: its piezochromic, viscochromic and AIE behavior with real sample analysis and bio-imaging applications. J Mater Chem C 11(38):13056–13066. https://doi.org/10.1039/d3tc02554c

    Article  CAS  Google Scholar 

  102. Mirgane HA, More KS, Bhosale SV (2022) Tetrapyridyl functionalised tetraphenylethylene AIEgen highly selective chemosensor for zinc sulfate. Sens Actuator Rep 4:100105. https://doi.org/10.1016/j.snr.2022.100105

    Article  Google Scholar 

  103. Yi SQ, Liu HL, Chen Z, Fan CB, Liu G, Pu SZ (2023) Novel fluorescent probes based on NBD-substituted imidazole amino to sequentially detect H2S and Zn2+. Dyes Pigm 214:111211. https://doi.org/10.1016/j.dyepig.2023.111211

    Article  CAS  Google Scholar 

  104. Hussein AS, Lafzi F, Kilic H, Bayindir S (2023) Synthesis of Bis-Tetraphenylethene as a Novel Turn-On selective zinc Sensor. Acs Omega 8(28):25432–25440. https://doi.org/10.1021/acsomega.3c02955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Du C, Liu XL, Li RA, Ran R, Dong XL, Yu ST, Qi H, Zhao R, Yin S, Sun B (2023) A butterfly-shaped AIEgen with excited-state intramolecular proton transfer effect for colorimetric and fluorescent detection of copper and zinc ions. Tetrahedron 144:133583. https://doi.org/10.1016/j.tet.2023.133583

    Article  CAS  Google Scholar 

  106. Zhang KZ, Peng L, Tian XY, Guang SY, Xu HY (2023) Based on theoretical calculations designed a novel dual-channel chemo-sensor for Mg2+ and Zn2+ detection and bioimaging applications. Microchem J 189:108328. https://doi.org/10.1016/j.microc.2022.108328

    Article  CAS  Google Scholar 

  107. Maity S, Maity AC, Das AK, Bhattacharyya N (2022) Dual-mode chemosensor for the fluorescence detection of zinc and hypochlorite on a fluorescein backbone and its cell-imaging applications. Anal Methods-Uk 14(28):2739–2744. https://doi.org/10.1039/d2ay00855f

    Article  CAS  Google Scholar 

  108. Samanta SS, Giri PK, Giri S, Ghosh A, Misra A (2023) Flexible HSA-interactive phenolphthalein based probe proficient at selective turn-on sensing for Zn2+& Al3+. J Mol Struct 1278:134927. https://doi.org/10.1016/j.molstruc.2023.134927

    Article  CAS  Google Scholar 

  109. Shi ZT, Jun L, Gang W, Biao C (2023) Design and synthesis of a multifunctional rhodamine-based chemosensor for simultaneous detection of Cu2+, Zn2+ and endogenous histidine (his) and its application in living HeLa cells and zebrafishes. Colloid Surf A 667:131193. https://doi.org/10.1016/j.colsurfa.2023.131193

    Article  CAS  Google Scholar 

  110. Dare EO, Akinhanmi TF, Aremu JA, Adetunji OR, Bamgbose JT, Vendrell-Criado V, Jiménez MC, Pérez-Ruiz R, Bonardd S, Díaz DD (2023) Dual-mode colorimetric/fluorescent chemosensor for Cu2+/Zn2+ and fingerprint imaging based on rhodamine ethylenediamine bis(triazolyl silsesquioxane). Photoch Photobio Sci 22(7):1527–1541. https://doi.org/10.1007/s43630-023-00395-4

    Article  CAS  Google Scholar 

  111. Zhang XP, ** GY, Chen ZS, Wu YJ, Li Q, Liu PF, ** GL (2022) An efficient turn-on fluorescence chemosensor system for zn(II) ions detection and imaging in mitochondria. J Photoch Photobio B 234:112485. https://doi.org/10.1016/j.jphotobiol.2022.112485

    Article  CAS  Google Scholar 

  112. Yao YX, Zeng FD, Ma JL, Wu LQ, **ng S, Yang HQ, Li YP, Du JS, Yang QB, Li YX (2024) An innovative near-infrared fluorescent probe with FRET effect for the continuous detection of Zn2+ and PPi with high sensitivity and selectivity, and its application in bioimaging. Spectrochim Acta A 309:123837. https://doi.org/10.1016/j.saa.2024.123837

    Article  CAS  Google Scholar 

  113. Yan LQ, Zhou CP, Li J, Yang H, Wu XZ, Li L (2023) A near-infrared fluorescent probe based on Dicyanisophorone for the detection of zinc ions (Zn2+) in Water and living cells. J Fluoresc 33(1):201–207. https://doi.org/10.1007/s10895-022-03040-y

    Article  CAS  PubMed  Google Scholar 

  114. Yan LQ, Lu DQ, Yang H, Wu XZ (2023) A dicyanisophorone-based probe for dual sensing Zn2+ and Cd2+ by near-infrared fluorescence. Spectrochim Acta A 290:122243. https://doi.org/10.1016/j.saa.2022.122243

    Article  CAS  Google Scholar 

  115. Yan LQ, Yang H, Li J, Zhou CP, Li L, Wu XZ, Lei CH (2022) A near infrared fluorescent probe for detection and bioimaging of zinc ions and hypochloric acid. Anal Chim Acta 1206:339750. https://doi.org/10.1016/j.aca.2022.339750

    Article  CAS  PubMed  Google Scholar 

  116. Enbanathan S, Munusamy S, Jothi D, Manojkumar S, Manickam S, Iyer SK (2022) Zinc ion detection using a benzothiazole-based highly selective fluorescence turn-on chemosensor and its real-time application. Rsc Adv 12(43):27839–27845. https://doi.org/10.1039/d2ra04874d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li Z, Wang J, Chen Y, **ao LW, Liu ZY (2023) A benzothiazole-based fluorescent probe for sensing Zn2+and its application. Inorg Chim Acta 545:121275. https://doi.org/10.1016/j.ica.2022.121275

    Article  CAS  Google Scholar 

  118. Liu QY, Yu YC, Wu MY, Yan XX, Wu WJ, You J (2023) Synthesis and application of a dual-functional fluorescent probe for sequential recognition of Zn2+ and glyphosate. Spectrochim Acta A 303:123221. https://doi.org/10.1016/j.saa.2023.123221

    Article  CAS  Google Scholar 

  119. Wang J, Liu Q, Li Y, Pang Y (2024) An Enviromentally Sensitive Zinc-Selective Two-Photon NIR Fluorescent Turn-on probe And Zinc sensing In Stroke. J Pharm Anal https://doi.org/10.1016/j.jpha.2023.11.010

  120. Li D, Liu AL, **ng YF, Li ZJ, Luo Y, Zhao SJ, Dong LL, **e TY, Guo KP, Li J (2023) A smart chemosensor with different response mechanisms to multi-analytes: chromogenic and fluorogenic recognition of Cu2+, Fe3+, and Zn2+. Dyes Pigm 213:111180. https://doi.org/10.1016/j.dyepig.2023.111180

    Article  CAS  Google Scholar 

  121. Kumar GD, Banasiewicz M, Wrzosek A, O’Mari O, Zochowska M, Vullev VI, Jacquemin D, Szewczyk A, Gryko DT (2022) A sensitive zinc probe operating enhancement of excited-state intramolecular charge transfer. Org Biomol Chem 20(37):7439–7447. https://doi.org/10.1039/d2ob01296k

    Article  CAS  PubMed  Google Scholar 

  122. Krinochkin A, Valieva M, Starnovskaya E, Slovesnova N, Minin A, Belousova A, Sadieva L, Taniya O, Khasanov A, Novikov A, Bruskov V, Vatolina S, Kopchuk D, Slepukhin P, Sharutin V, Zyryanov G (2024) New fluorescent dye for the detection of Zn2+ in living cells and fixed sections of the rat pancreas. J Fluoresc. https://doi.org/10.1007/s10895-024-03603-1

    Article  PubMed  Google Scholar 

  123. Patawanich P, Petdum A, Sirirak J, Chatree K, Charoenpanich A, Panchan W, Setthakarn K, Kamkaew A, Sooksimuang T, Maitarad P, Wanichacheva N (2022) Highly selective zinc(II) triggered Turn-ON [5]helicene-based fluorescence sensor: its application in liver and brain cells imaging. J Mol Liq 362:119710. https://doi.org/10.1016/j.molliq.2022.119710

    Article  CAS  Google Scholar 

  124. Mouli MSSV, Mishra AK (2023) Sequential recognition capability of a novel flavin-dipicolyl analogue toward zinc and phosphate ion: a model capable of selective recognition of AMP over ADP/ATP. Dyes Pigm 212:111148. https://doi.org/10.1016/j.dyepig.2023.111148

    Article  CAS  Google Scholar 

  125. Zhang YB, Wang BL, Rong XQ, Liu J, Qiu XY, Sun L, Cheng YT (2023) Development of a novel near-infrared fluorescent probe for selective detection of zinc ions in environmental and food samples. Tetrahedron Lett 129:154713. https://doi.org/10.1016/j.tetlet.2023.154713

    Article  CAS  Google Scholar 

  126. ** HB, Ju C, Duan CX, Zhang NW, Cao YY, **a QE, Zhou J, Gao SM, Wang YA, Huang H (2024) Revealing the elevation of Zn2+ in the brain of depressed mice by a ratiometric fluorescent probe with dual near-infrared emissions. Chem Commun 60(9). https://doi.org/10.1039/d3cc05529a

    Article  Google Scholar 

  127. Zhu WY, Liu K, Zhang X (2023) A benzimidazole-derived fluorescent chemosensor for Cu(ii)-selective turn-off and zn(ii)-selective ratiometric turn-on detection in aqueous solutions. Sens Diagn 2(3):665–675. https://doi.org/10.1039/d3sd00020f

    Article  CAS  Google Scholar 

  128. Singh G, Devi A, Saini A, Kaur JD, Gupta S (2022) Synthesis,“turn-on” fluorescence signals towards Zn2+ and Hg2+ and monoamine oxidase A inhibitory activity using a molecular docking approach of morpholine analogue Schiff base linked organosilanes. New J Chem 46(45):21717–21729. https://doi.org/10.1039/d2nj03767j

    Article  CAS  Google Scholar 

  129. Suh B, Gil D, Yoon S, Kim KT, Kim C (2022) Hydrazine-carbothioamide-based fluorescent probe for the detection of Zn2+: applications to Paper Strip, zebrafish and water samples. Chemosensors 10(1):32. https://doi.org/10.3390/chemosensors10010032

    Article  CAS  Google Scholar 

  130. Thakur N, Kandwal P, Pandey R (2023) Development of a thiophene-thiophene π-Conjugate Ultrasensitive fluorescent probe for heavy-metal ions via Discrete Signaling: DFT studies and mechanistic insights. Ind Eng Chem Res 62:12864–12879. https://doi.org/10.1021/acs.iecr.3c01806

    Article  CAS  Google Scholar 

  131. Sharma V, Sahu M, Manna AK, De DE, Patra GK (2022) A quinazolin-based Schiff-base chemosensor for colorimetric detection of Ni2+ and Zn2+ ions and ‘turn-on’ fluorometric detection of Zn2+ ion. Rsc Adv 12(53):34226–34235. https://doi.org/10.1039/d2ra05564c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shellaiah M, Thirumalaivasan N, Aazaad B, Awasthi K, Sun KW, Wu SP, Lin MC, Ohta N (2022) An AIEE active anthracene-based nanoprobe for Zn2+ and tyrosine detection validated by Bioimaging studies. Chemosensors 10(10):381. https://doi.org/10.3390/chemosensors10100381

    Article  CAS  Google Scholar 

  133. Goel A, Tomer N, Bhalla P, Malhotra R (2022) Pyranone based probe for the selective and specific recognition of zinc ions. Inorg Chim Acta 534:120828. https://doi.org/10.1016/j.ica.2022.120828

    Article  CAS  Google Scholar 

  134. Paderni D, Giorgi L, Voccia M, Formica M, Caporaso L, Macedi E, Fusi V (2022) A New Benzoxazole-based fluorescent macrocyclic Chemosensor for Optical Detection of Zn2+ and Cd2+. Chemosensors 10(5):188. https://doi.org/10.3390/chemosensors10050188

    Article  CAS  Google Scholar 

  135. Sahu S, Sikdar Y, Bag R, Cerezo J, Cerón-Carrasco JP, Goswami S (2022) Turn on fluorescence sensing of Zn2+ based on Fused Isoindole-Imidazole Scaffold. Molecules 27(9):2859. https://doi.org/10.3390/molecules27092859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shrestha AK, Samarakoon T, Fu**o T, Hagimori M (2023) Detection of Zn2+ ions using a high-affinity low-molecular-weight fluorescence probe in two freshwater organisms. Toxicol Env Health 15(2):145–155. https://doi.org/10.1007/s13530-023-00167-8

    Article  Google Scholar 

  137. Hagimori M, Hara F, Mizuyama N, Fu**o T, Saji H, Mukai T (2022) High-Affinity ratiometric fluorescence probe based on 6-Amino-2,2′-Bipyridine Scaffold for endogenous Zn2+ and its application to living cells. Molecules 27(4):1287. https://doi.org/10.3390/molecules27041287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yu QY, Wei CW, Wang XJ, Gao SQ, Tong XY, Lin YW (2023) A fluorescent probe based on a phenylalanine derivative is capable of sequential detection of Zn2+ and Cys/His. J Biol Inorg Chem 28(2):205–211. https://doi.org/10.1007/s00775-022-01984-x

    Article  CAS  PubMed  Google Scholar 

  139. Yue LS, Ai Y, Liu QL, Mao LT, Ding HC, Fan CB, Liu G, Pu SZ (2023) A novel diarylethene-based fluorescence sensor for Zn2+ detection and its application. Spectrochim Acta A 301:122960. https://doi.org/10.1016/j.saa.2023.122960

    Article  CAS  Google Scholar 

  140. Ciupa A (2024) Novel pyrazoline and pyrazole turn on fluorescent sensors selective for Zn2+/Cd2+ at 480 nm and Fe3+/Fe2+ at 465 nm in MeCN. Rsc Adv 14(5):3519–3524. https://doi.org/10.1039/d4ra00036f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bumagina NA, Ksenofontov AA, Antina EV, Berezin MB (2024) The new role of dipyrromethene chemosensor for absorbance-ratiometic and fluorescence turn-on sensing Zn2+ ions in water-organic solutions and real water samples. Spectrochim Acta A 307:123663. https://doi.org/10.1016/j.saa.2023.123663

    Article  CAS  Google Scholar 

  142. Kolbus A, Danel A, Moskwa P, Szary K, Uchacz T (2024) Pyrazoloquinoline-based fluorescent sensor for the detection of Pb2+, Zn2+ and the realization of an OR-type optical logic gate. Dyes Pigm 223:111956. https://doi.org/10.1016/j.dyepig.2024.111956

    Article  CAS  Google Scholar 

Download references

Funding

This work is funded by the National Natural Science Foundation of China (22364010), and the startup fund of Guilin University of Technology (GLUTQD2017144).

Author information

Authors and Affiliations

Authors

Contributions

Junjie Yang and Liting Tang prepared figures 10-20. Lin Li and **ongzhi Wu prepared figures 21-27. Liqiang Yan wrote the main manuscript text and prepared figures 1-9. All authors reviewed the manuscript.

Corresponding author

Correspondence to Liqiang Yan.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of interest

The authors declare no conflict interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1(1 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Tang, L., Li, L. et al. Recent Advances in Organic Small-Molecule Fluorescent Probes for the Detection of Zinc Ions (Zn2+). J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03770-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03770-1

Keywords

Navigation