Log in

N-Do** CQDs as an Efficient Fluorescence Probe Based on Dynamic Quenching for Determination of Copper Ions and Alcohol Sensing in Baijiu

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

To address an accurate detection of heavy metal ions in Baijiu production, a nitrogen-do** carbon quantum dots (N-CQDs) was prepared by hydrothermal method from citric acid and urea. The as-prepared N-CQDs had an average particle size of 2.74 nm, and a large number of functional groups (amino, carbonyl group, etc.) attached on its surface, which obtained a 9.6% of quantum yield (QY) with relatively high and stable fluorescence performance. As a fluorescent sensor, the fluorescence of N-CQDs at 380 nm excitation wavelength could be quenched quantitatively by adding Cu2+, due to the dynamic quenching of electron transfer caused by the binding of amine groups and Cu2+, which showed excellent sensitivity and selectivity to Cu2+ in the range of 0.5–5 μM with a detection limit (LOD) of 0.032 μM. In addition, the N-CQDs as well as could be applied to quantitative determine alcohol content in the range of 10–80 V/V% depending on the fluorescence enhancement. Upon the experiment, the fluorescent mechanism was studied by Molecular dynamics (MD) simulations, which demonstrated that solvent effect played an influential role on sensing alcohol content in Baijiu. Overall, the work provided a theoretically guide for the design of fluorescence sensors to monitor heavy metal ion in liquid drinks and sense alcohol content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data were provided in the manuscript.

References

  1. Xu Y, Zhao J, Liu X et al (2022) Flavor mystery of Chinese traditional fermented baijiu: The great contribution of ester compounds[J]. Food Chem 369:130920

    Article  CAS  PubMed  Google Scholar 

  2. Du J, Li Y, Xu J et al (2021) Characterization of key odorants in Langyatai Baijiu with Jian flavour by sensory-directed analysis[J]. Food Chem 352:129363

    Article  CAS  PubMed  Google Scholar 

  3. Xu Y, Wang X, Liu X et al (2021) Discovery and development of a novel short-chain fatty acid ester synthetic biocatalyst under aqueous phase from Monascus purpureus isolated from Baijiu[J]. Food Chem 338:128025

    Article  CAS  PubMed  Google Scholar 

  4. Desai ML, Deshmukh B, Lenka N et al (2019) Influence of do** ion, cap** agent and pH on the fluorescence properties of zinc sulfide quantum dots: sensing of Cu2+ and Hg2+ ions and their biocompatibility with cancer and fungal cells[J]. Spectrochim Acta Part A Mol Biomol Spectrosc 210:212–221

    Article  CAS  Google Scholar 

  5. Zhang D, Tang J, Liu H (2019) Rapid determination of lambda-cyhalothrin using a fluorescent probe based on ionic-liquid-sensitized carbon dots coated with molecularly imprinted polymers[J]. Anal Bioanal Chem 411(20):5309–5531

    Article  CAS  PubMed  Google Scholar 

  6. Sun X, Liu Y, Niu N et al (2019) Synthesis of molecularly imprinted fluorescent probe based on biomass-derived carbon quantum dots for detection of mesotrione[J]. Anal Bioanal Chem 411(21):5519–5530

    Article  CAS  PubMed  Google Scholar 

  7. Pan M, **e X, Liu K et al (2020) Fluorescent carbon quantum dots-synthesis, functionalization and sensing application in food analysis[J]. Nanomaterials 10(5):930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng X, Ren S, Wang L et al (2021) Controllable functionalization of carbon dots as fluorescent sensors for independent Cr(VI), Fe(III) and Cu(II) ions detection[J]. J Photochem Photobiol A Chem 417:113359

    Article  CAS  Google Scholar 

  9. Gayen B, Palchoudhury S, Chowdhury J (2019) Carbon dots: A mystic star in the world of nanoscience[J]. J Nanomater 2019:1–19

    Article  Google Scholar 

  10. Dong Y, Zhang Y, Zhi S et al (2021) Green synthesized fluorescent carbon dots from Momordica charantia for selective and sensitive detection of Pd2+ and Fe3+[J]. ChemSelect 6(1):123–130

    CAS  Google Scholar 

  11. Raja S, Buhl EM, Dreschers S et al (2021) Curauá-derived carbon dots: Fluorescent probes for effective Fe(III) ion detection, cellular labeling and bioimaging[J]. Mater Sci Eng C 129:112409

    Article  CAS  Google Scholar 

  12. Guo H, Wang X, Wu N et al (2021) In-situ synthesis of carbon dots-embedded europium metal-organic frameworks for ratiometric fluorescence detection of Hg2+ in aqueous environment[J]. Anal Chim Acta 1141:13–20

    Article  CAS  PubMed  Google Scholar 

  13. Raikwar VR (2022) Synthesis and study of carbon quantum dots (CQDs) for enhancement of luminescence intensity of CQD@ LaPO4: Eu3+ nanocomposite[J]. Mater Chem Phys 275:125277

    Article  CAS  Google Scholar 

  14. Chen ZH, Han XY, Lin ZY et al (2019) Facile reflux synthesis of polyethyleneimine-capped fluorescent carbon dots for sequential bioassays toward Cu2+/H2S and its application for a logic system[J]. Biotechnol Appl Biochem 66(3):426–433

    Article  CAS  PubMed  Google Scholar 

  15. Wang W, Chen J, Wang D et al (2021) Facile synthesis of biomass waste-derived fluorescent N, S, P co-doped carbon dots for detection of Fe3+ ions in solutions and living cells[J]. Anal Methods 13(6):789–795

    Article  CAS  PubMed  Google Scholar 

  16. He Y, Wang Y, Mao G et al (2022) Ratiometric fluorescent nanoprobes based on carbon dots and multicolor CdTe quantum dots for multiplexed determination of heavy metal ions[J]. Anal Chim Acta 1191:339251

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y, Liu W, Cao J et al (2020) On-site, rapid and visual determination of Hg2+ and Cu2+ in red wine by ratiometric fluorescence sensor of metal-organic frameworks and CdTeQDs[J]. Food Chem 328:127119

    Article  CAS  PubMed  Google Scholar 

  18. Molkenova A, Amangeldinava Y, Aben D et al (2019) Quick synthesis of fluorescent nitrogen-doped carbon nanoparticles for selective and sensitive Fe(III) detection in water[J]. Sens Bio-Sens Res 23:100271

    Article  Google Scholar 

  19. Zhu LL, Shen DK, Liu Q et al (2021) Sustainable synthesis of bright green fluorescent carbon quantum dots from lignin for highly sensitive detection of Fe3+ ions[J]. Appl Surf Sci 565:150526

    Article  CAS  Google Scholar 

  20. Ding S, Gao Y, Ni B et al (2021) Green synthesis of biomass-derived carbon quantum dots as fluorescent probe for Fe3+ detection[J]. Inorg Chem Commun 130:108636

    Article  CAS  Google Scholar 

  21. Şenol AM, Onganer Y (2022) A novel “turn-off” fluorescent sensor based on cranberry derived carbon dots to detect iron (III) and hypochlorite ions[J]. J Photochem Photobiol, A 424:113655

    Article  Google Scholar 

  22. Cao L, Sahu S, Anilkumar P et al (2011) Carbon Nanoparticles as Visible-Light Photocatalysts for Efficient CO2+ Conversion and Beyond[J]. J Am Chem Soc 133(13):4754–4757

    Article  CAS  PubMed  Google Scholar 

  23. Zhao S, Yue G, Liu X et al (2023) Lignin-based carbon quantum dots with high fluorescence performance prepared by supercritical catalysis and solvothermal treatment for tumor-targeted labeling[J]. Adv Compos Hybrid Mater 6(2):73

    Article  CAS  Google Scholar 

  24. Pei L, Zhang W, Yang S et al (2023) Nitrogen and sulfur co-doped carbon dots as a turn-off fluorescence probe for the detection of cerium and iron[J]. J Fluoresc 33(3):1147–1156

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, **g C, Wang B (2022) A label-free fluorescent sensor based on Si, N-Codoped carbon quantum dots with enhanced sensitivity for the determination of Cr(VI)[J]. Materials 15(5):1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu X, Ray R, Gu Y et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc 126(40):12736–12737

    Article  CAS  PubMed  Google Scholar 

  27. Othman HO, Salehnia F, Hosseini M et al (2020) Fluorescence immunoassay based on nitrogen doped carbon dots for the detection of human nuclear matrix protein NMP22 as biomarker for early stage diagnosis of bladder cancer[J]. Microchem J 157:104966

    Article  CAS  Google Scholar 

  28. Liu Y, Zhao M, Zhu Q (2023) Low Cu (II) Concentration detection based on fluorescent detector made from citric acid and urea[J]. J Fluoresc 33(6):2391–2401

    Article  CAS  PubMed  Google Scholar 

  29. Hu X, Li Y, Xu Y et al (2021) Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk[J]. Food Chem 339:127775

    Article  CAS  PubMed  Google Scholar 

  30. Hashemi N, Mousazadeh MH (2021) Preparation of fluorescent nitrogen-doped carbon dots for highly selective on-off detection of Fe3+ ions in real samples[J]. Opt Mater 121:111515

    Article  CAS  Google Scholar 

  31. Shan FS, **a HY, **e XY et al (2021) Novel N-doped carbon dots prepared via citric acid and benzoylurea by green synthesis for high selectivity Fe(III) sensing and imaging in living cells[J]. Microchem J 167:106273

    Article  CAS  Google Scholar 

  32. Mocci F, Engelbrecht L, Olla C et al (2022) Carbon Nanodots from an In Silico Perspective[J]. Chem Rev 122(16):13709–13799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shekarbeygi Z, Farhadian N, Ansari M et al (2020) An innovative green sensing strategy based on Cu-doped Tragacanth/Chitosan nano carbon dots for Isoniazid detection[J]. Spectrochim Acta Part A Mol Biomol Spectrosc 228:117848

    Article  CAS  Google Scholar 

  34. Yan L, Xu LX (2020) Nitrogen-doped carbon dots used as an “on-off-on” fluorescent sensor for Fe3+ and glutathione detection[J]. Dyes Pigm 178:108358

    Article  Google Scholar 

  35. Amato F, Soares MCP, Cabral TD et al (2021) Agarose-based fluorescent waveguide with embedded silica nanoparticle-carbon nanodot hybrids for pH sensing[J]. ACS Appl Nano Mater 4(9):9738–9751

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Ying Liu and Qiufeng Zhu wrote the main manuscript text and Mengjie Zhao and Shang Feng prepared figures 1-13 and table 1-2. Xuqi Liu, Shuangyang Li and **anren Zhang performed Molecular simulations. All authors reviewed the manuscript.

Corresponding author

Correspondence to Qiufeng Zhu.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhao, M., Liu, X. et al. N-Do** CQDs as an Efficient Fluorescence Probe Based on Dynamic Quenching for Determination of Copper Ions and Alcohol Sensing in Baijiu. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03749-y

Keywords

Navigation