Log in

Experimental and Theoretical Rotational Diffusion Studies of 7DM4M1M1,8, N-2(1H)-one and 7A4T2H1B-2-one in Series of Alcohol Solvents: Stoke’s-Einstein-Debye and Alavi-Waldeck Models

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Rotational diffusion studies of two solutes 7-(dimethylamino)-4-methoxy-1-methyl-1,8-naphthyridin-2(1H)-one (7DM4M1M1,8, N-2(1H)-one) and 7-amino-4-(trifluoromethyl)-2H-1-benzopyran-2-one (7A4T2H1B-2-one) having equal volumes but different chemical natures are studied in series of alcohol solvents at 303 K using steady-state methods. HOMO–LUMO, Electron density, Molecular electrostatic potential (MEP), etc., are obtained from computational calculations using Gaussian 09 software. Rotational reorientation times of 7DM4M1M1,8, N-2(1H)-one solute molecule is found to be less than 7A4T2H1B-2-one solute molecule indicates it rotates slowly in chosen solvents. Stoke’s-Einstein-Debye (SED) model with stick boundary conditions for the 7A4T2H1B-2-one solute molecule is modeled to describe mechanical friction. Polar solutes along with mechanical friction also experience dielectric friction. Both these frictions being non-separable, the Alavi-Waldeck (AW) model is studied for dielectric friction contribution to the total friction solute experiences in solvents. AW model effectively explains the observed dielectric friction in alcohol solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Dutt GB, Ghanty TK (2004) Rotational dynamics of nondipolar probes in butanols: Correlation of reorientation times with solute-solvent interaction strengths. J Phys Chem A 108:6090–6095. https://doi.org/10.1021/jp048601q

    Article  CAS  Google Scholar 

  2. Mali KS, Dutt GB, Mukherjee T (2008) Rotational diffusion of a nonpolar and a dipolar solute in 1-butyl-3-methylimidazolium hexafluorophosphate and glycerol: Interplay of size effects and specific interactions. J Chem Phys. https://doi.org/10.1063/1.2827473.054504-1-054504-9

    Article  PubMed  Google Scholar 

  3. Dutt GB, Raman S (2001) Rotational dynamics of coumarins: An experimental test of dielectric friction theories. J Chem Phys 114:6702–6713. https://doi.org/10.1063/1.1357797

    Article  CAS  Google Scholar 

  4. Dutt GB (2000) Rotational dynamics of non-dipolar probes in alkane–alkanol mixtures: microscopic friction on hydrogen bonding and non-hydrogen bonding solute molecules. J Chem Phys 113:11154–11158. https://doi.org/10.1063/1.1326050

    Article  CAS  Google Scholar 

  5. Bagchi B, Jana B (2010) Solvation dynamics in dipolar liquids. Chem Soc Rev 39:1936–1954. https://doi.org/10.1039/B902048A

    Article  CAS  PubMed  Google Scholar 

  6. Dutt GB (2005) Molecular rotation as a tool for exploring specific solute-solvent interactions. Chem Phys Chem 6:413–418. https://doi.org/10.1002/cphc.200400337

    Article  CAS  PubMed  Google Scholar 

  7. Prabhu SR, Dutt GB (2015) Rotational diffusion of charged and nondipolar solutes in ionic liquid-organic solvent mixtures: Evidence for stronger specific solute-solvent interactions in presence of organic solvent. J Phys Chem B 119:10720–10726. https://doi.org/10.1021/acs.jpcb.5b06297

    Article  CAS  PubMed  Google Scholar 

  8. Prabhu SR, Dutt GB (2014) Rotational diffusion of nondipolar and charged solutes in alkyl-substituted imidazolium triflimides: Effect of C2 methylation on solute rotation. J Phys Chem B 118:9420–9426. https://doi.org/10.1021/jp5055155

    Article  CAS  PubMed  Google Scholar 

  9. Nadaf YF, Renuka CG (2015) Analysis of rotational diffusion of coumarin laser dyes. Can J Phys 93:3–6. https://doi.org/10.1139/cjp-2014-0020

    Article  CAS  Google Scholar 

  10. Gautam RK, Chatterjee A, Seth D (2019) Photophysics, rotational dynamics and fluorescence lifetime imaging study of coumarin dyes in deep eutectic solvent. J Mol Liq 280:399–409. https://doi.org/10.1016/j.molliq.2019.01.129

    Article  CAS  Google Scholar 

  11. Nagachandra KH, Mannekutla JR, Shivkumar MA, Inamdar SR (2012) Influence of temperature on rotational diffusion of dipolar laser dyes in glycerol. J Lumin 132(2012):570–578. https://doi.org/10.1016/j.jlumin.2011.09.049

    Article  CAS  Google Scholar 

  12. Raikar US, Tangod VB, Renuka CG, Mastiholi BM (2010) Dynamical behavior of coumarin compounds in alcohol solvents. Afr J Pure Appl Chem 4(2010):51–57. https://doi.org/10.5897/AJPAC.9000058

    Article  CAS  Google Scholar 

  13. Melavanki R, Muddapur GV, Srinivasa HT et al (2021) Solvation, rotational dynamics, photophysical properties study of aromatic asymmetric di-ketones: An experimental and theoretical approach. J Mol Liq. https://doi.org/10.1016/j.molliq.2021.116456

    Article  Google Scholar 

  14. Goudar R, Gupta R, Kulkarni GU, Inamdar SR (2015) Rotational diffusion of a new large non-polar dye molecule in Alkanes. J Fluoresc 25:1671–1679. https://doi.org/10.1007/s10895-015-1654-6

    Article  CAS  PubMed  Google Scholar 

  15. Patil SA, K H N, Mannekutla JR et al (2022) Rotational diffusion dynamics of fluorescein derivatives in binary mixtures of solvents: an experimental and computational study. J Fluoresc 32:647–659. https://doi.org/10.1007/s10895-021-02878-y

    Article  CAS  PubMed  Google Scholar 

  16. Kumar PV, Maroncelli M (2000) The non-separability of dielectric and mechanical friction in molecular systems: A simulation study. J Chem Phys 12:5370–5381. https://doi.org/10.1063/1.481107

    Article  Google Scholar 

  17. Inamdar SR, Mannekutla JR, Mulimani BG, Savadatti MI (2006) Rotational dynamics of nonpolar laser dyes. Chem Phys letter 429:141–146. https://doi.org/10.1016/j.cplett.2006.08.020

    Article  CAS  Google Scholar 

  18. Gayathri BR, Mannekutla JR, Inamdar SR (2008) Rotational diffusion of coumarins in alcohols: a dielectric friction study. J Fluoresc 18:943–952. https://doi.org/10.1007/s10895-008-0337-y

    Article  CAS  PubMed  Google Scholar 

  19. Gierer VA, Wirtz K (1953) Molecular theory of microreiberation. Z Naturforschg 8A:532. https://doi.org/10.1515/zna-1953-0903

    Article  CAS  Google Scholar 

  20. Dote JL, Kivelson D, Schwartz RN (1981) A molecular quasi-hydrodynamic free-space model for molecular rotational relaxation in liquids. J Phys Chem 82:2169. https://doi.org/10.1021/j150615a007

    Article  Google Scholar 

  21. Nee TW, Zwanzig R (1970) Theory of dielectric relaxation in polar liquids. J Chem Phys 52:6353–6363. https://doi.org/10.1063/1.1672951

    Article  CAS  Google Scholar 

  22. Hu C, Zwanzig R (1974) Rotational friction coefficients for spheroids with the slip** boundary condition. J Chem Phys 60:4354–4357. https://doi.org/10.1063/1.1680910

    Article  CAS  Google Scholar 

  23. Van Der Zwan G, Hynes JT (1985) Time-dependent fluorescence solvent shifts, dielectric friction, and nonequilibrium solvation in polar solvents. J Phys Chem 89:4181–4188. https://doi.org/10.1021/j100266a008

    Article  Google Scholar 

  24. Alavi DS, Hartman RS, Waldeck DH (1991) A test of continuum models for dielectric friction. Rotational diffusion of phenoxazine dyes in dimethylsulfoxide. J Chem Phys 94:4509–4520. https://doi.org/10.1063/1.460606

    Article  CAS  Google Scholar 

  25. Alavi DS, Waldeck DH (1991) Rotational dielectric friction on a generalized charge distribution. J Chem Phys 94:6197–6202. https://doi.org/10.1063/1.460406

    Article  Google Scholar 

  26. Hartman RS, Waldeck DH (1994) Rotational diffusion of fluorenes in Dimethyl Sulfoxide. J Phys Chem 98:1386–1393. https://doi.org/10.1021/j100056a003

    Article  CAS  Google Scholar 

  27. Hartman RS, Waldeck DH (1991) An experimental test of dielectric friction models using the diffusion of aminoanthraquinones. J Phys Chem 95:7872–7880. https://doi.org/10.1021/j100173a059

    Article  CAS  Google Scholar 

  28. Dutta GB, Rama Krishna G (2001) Rotational dynamics of coumarins in nonassociative solvents: Point dipole versus extended charge distribution models of dielectric friction. J Chem Phys 115:4732–4741. https://doi.org/10.1063/1.1395563

    Article  CAS  Google Scholar 

  29. Horng ML, Gardecki JA, Maroncelli M (1997) Rotational dynamics of coumarin 153: Time-dependent friction, dielectric friction, and other nonhydrodynamic effects. J Phys Chem A 101:1030–1047. https://doi.org/10.1021/jp962921v

    Article  CAS  Google Scholar 

  30. Maroncelli M (1997) Continuum estimates of rotational dielectric friction and polar solvation. J Chem Phys 106:1545–1555. https://doi.org/10.1063/1.473276

    Article  CAS  Google Scholar 

  31. Hughes RM, Mutzenhardt P, Bartolotti L, Rodriguez AA (2008) Experimental and theoretical analysis of the reorientational dynamics of fullerene C70 in various aromatic solvents. J Phys Chem A 112:4186–4193. https://doi.org/10.1021/jp800027j

    Article  CAS  PubMed  Google Scholar 

  32. Kubinyi M, Grofcsik A, Pápai I, Jones WJ (2003) Rotational reorientation dynamics of Nile blue A and oxazine 720 in protic solvents. Chem Phys 286:81–96. https://doi.org/10.1016/S0301-0104(02)00908-4

    Article  CAS  Google Scholar 

  33. Zhou P, Song P, Liu J et al (2008) Rotational reorientation dynamics of oxazine 750 in polar solvents. J Phys Chem A 112:3646–3655. https://doi.org/10.1021/jp7120998

    Article  CAS  PubMed  Google Scholar 

  34. Hay CE, Marken F, Blanchard GJ (2010) Solvent-dependent changes in molecular reorientation dynamics: The role of solvent-solvent interactions. J Phys Chem A 114:4957–4962. https://doi.org/10.1021/jp912217r

    Article  CAS  PubMed  Google Scholar 

  35. Guo J, Han KS, Mahurin SM, Baker GA et al (2012) Rotational and translational dynamics of rhodamine 6G in a pyrrolidinium ionic liquid: A combined time-resolved fluorescence anisotropy decay and NMR study. J Phy Chem B 116:7883–7890. https://doi.org/10.1021/jp303186v

    Article  CAS  Google Scholar 

  36. Zakerhamidi MS, Ghanadzadeh A, Tajalli H et al (2010) Substituent and solvent effects on the photo-physical properties of some coumarin dyes. Spectrochim Acta Mol BiomolSpectrosc 77:337–341. https://doi.org/10.1016/j.saa.2009.12.060

    Article  CAS  Google Scholar 

  37. Ghazy R, Azim SA, Shaheen M, El-Mekawey F (2004) Experimental studies on the determination of the dipole moments of some different laser dyes. Spectrochim Acta Mol BiomolSpectrosc 60:187–191. https://doi.org/10.1016/s1386-1425(03)00205-1

    Article  CAS  Google Scholar 

  38. Zakerhamidi MS, Ghanadzadeh A, Moghadam M (2011) Effect of anisotropic and isotropic solvent on the dipole moment of coumarin dyes. Spectrochim Acta Mol BiomolSpectrosc 78:961–966. https://doi.org/10.1016/j.saa.2010.12.002

    Article  CAS  Google Scholar 

  39. Nad S, Kumbhakar M, Pal H (2003) Photophysical Properties of Coumarin-152 and Coumarin-481 Dyes: Unusual Behavior in Nonpolar and in Higher Polarity Solvents. J Phys Chem A 107:4808–4816. https://doi.org/10.1021/jp021543t

    Article  CAS  Google Scholar 

  40. Indirapriyadharshini VK, Ramamurthy P (2007) Fluorescence anisotropy of acridinedione dyes in glycerol: Prolate model of ellipsoid. J Chem Sci 119:161–168. https://doi.org/10.1007/s12039-007-0023-7

    Article  CAS  Google Scholar 

  41. Edward JT (1970) Molecular volumes and the Stokes-Einstein equation. J Chem Educ 47:261. https://doi.org/10.1021/ed047p261

    Article  CAS  Google Scholar 

  42. Small EW, Isenberg I (1977) Hydrodynamic properties of a rigid macromolecule: Rotational and linear diffusion and fluorescence anisotropy. Biopolymers 16:1907–1928. https://doi.org/10.1002/bip.1977.360160907

    Article  CAS  PubMed  Google Scholar 

  43. Sension RJ, Hochstrasser RM (1993) Comment on Rotational friction coefficients for ellipsoids and chemical molecules with slip boundary conditions. J Chem Phys 98:2490. https://doi.org/10.1063/1.465075

    Article  CAS  Google Scholar 

  44. Mita Roy S, Doraiswamy (1993) Rotational dynamics of nonpolar solutes in different solvents: Comparative evaluation of the hydrodynamic and quasihydrodynamic models. J Chem Phys 98:3213–3223. https://doi.org/10.1063/1.464094

    Article  Google Scholar 

  45. Mannekutla JR, Inamdar SR, Mulimani BG, Savadatti MI (2010) Rotational diffusion of coumarins: a dielectric friction study. J Fluoresc 20:797–808. https://doi.org/10.1007/s10895-010-0606-4

    Article  CAS  PubMed  Google Scholar 

  46. Kumar A, Renuka CG (2019) An experimental and theoretical test of dielectric friction models using rotational diffusion of 7-diethylamino-2-h-1-benzopyran-2-one in non-associative solvents. J Fluoresc 29:899–909. https://doi.org/10.1007/s10895-019-02402-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Anil Kumar—Prepared—Original draft, Conceptualization, Methodology, Data Analysis, Figures, Tables, C.G.R-Reviewing, Supervision.

Corresponding author

Correspondence to C. G. Renuka.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Renuka, C.G. Experimental and Theoretical Rotational Diffusion Studies of 7DM4M1M1,8, N-2(1H)-one and 7A4T2H1B-2-one in Series of Alcohol Solvents: Stoke’s-Einstein-Debye and Alavi-Waldeck Models. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03707-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03707-8

Keywords

Navigation