Log in

Natural Pigments-Based Two-Component White Light Emitting Systems

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this paper, a new class of two component white light emitting systems viz, JaB (java plum + beetroot) {I}, and CaB (carrot + beetroot) {II} were developed through resonance energy transfer (RET) phenomenon by using a fruit (java plum) and two vegetable (carrot and beetroot) extracts. In these white light emitting systems, java plum and carrot are the donors while beetroot is the acceptor. The primary fluorescent pigments present in the natural extracts (i.e., anthocyanin in java plum, β-carotene in carrot, and betanin in beetroot) were responsible for the white light emission. The CIE (Commission Internationale d’Eclairage) coordinates for I and II were {0.32, 0.34} and {0.33, 0.33}, respectively, in solution phase. Interestingly, the white light emission (WLE) was also achieved in agar-agar gel medium. In gel medium, the CIE values were {0.31, 0.34} and {0.33, 0.32} for I and II, respectively. The donor-acceptor distance (r) for I and II were found to be 0.5 and 0.4 nm, respectively. Furthermore, the rate of energy transfer was also quantified with the values of 2.78 × 109 s−1 for JaB (I) and 1.02 × 108 s−1 for CaB (II) systems. The mechanistic investigation of the two white light systems was further supported by DFT studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

Availability of Data and Materials

All sets of data are included in the manuscript and supporting information file.

References

  1. Wang J, Lin W, Li W (2013) Three-channel fluorescent sensing via organic white light-emitting dyes for detection of hydrogen sulfide in living cells. Biomaterials 34:7429–7436. https://doi.org/10.1016/j.biomaterials.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  2. Gather MC, Köhnen A, Meerholz K (2011) White organic light-emitting diodes. Adv Mater 23:233–248. https://doi.org/10.1002/adma.201002636

    Article  CAS  PubMed  Google Scholar 

  3. Fleetham T, Ecton J, Wang Z, Bakken N, Li J (2013) Single-doped white organic light-emitting device with an external quantum efficiency over 20%. Adv Mater 25:2573–2576. https://doi.org/10.1002/adma.201204602

    Article  CAS  PubMed  Google Scholar 

  4. Vohra V, Calzaferri G, Destri S, Pasini M, Porzio W, Botta C (2010) Toward white light emission through efficient two-step energy transfer in hybrid nanofibers. ACS Nano 4:1409–1416. https://doi.org/10.1021/nn9017922

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Q, Wang CF, Ling LT, Chen S (2014) Fluorescent nanomaterial-derived white light-emitting diodes: what’s going on. J Mater Chem C 2:4358–4373. https://doi.org/10.1039/c4tc00048j

    Article  CAS  Google Scholar 

  6. Pan M, Liao W, Yin S, Sun S, Su C (2018) Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies. Chem Rev 118:8889–8935. https://doi.org/10.1021/acs.chemrev.8b00222

    Article  CAS  PubMed  Google Scholar 

  7. Park S, Kwon JE, Kim SH, Seo J, Chung K, Park S-Y, Jang D-J, Milián Medina B, Gierschner J, Park SY (2009) A White-Light-Emitting molecule: Frustrated energy transfer between constituent emitting centers. J Am Chem Soc 131(39):14043–14049. https://doi.org/10.1021/ja902533f

    Article  CAS  PubMed  Google Scholar 

  8. Molla MR, Ghosh S (2012) Hydrogen-bonding-mediated J-aggregation and white-light emission from a remarkably simple, single-component, naphthalenediimide chromophore. Chemistry 18(5):1290–1294. https://doi.org/10.1002/chem.201103600

    Article  CAS  PubMed  Google Scholar 

  9. Sanju KS, Neelakandan PP, Ramaiah D (2011) DNA-assisted white light emission through FRET. Chem Commun 47:1288–1290. https://doi.org/10.1039/c0cc04173d

    Article  CAS  Google Scholar 

  10. Mukherjee S, Thilagar P (2014) Organic white-light emitting materials. Dye Pigment 110:2–27. https://doi.org/10.1016/j.dyepig.2014.05.031

    Article  CAS  Google Scholar 

  11. Singh V, Mishra AK (2016) White light emission from an aqueous vegetable cocktail: application towards pH sensing. Dye Pigment 125:362–366. https://doi.org/10.1016/j.dyepig.2015.10.017

    Article  CAS  Google Scholar 

  12. Li J, Liang Q, Hong J, Yan J, Dolgov L, Meng Y et al (2018) White light emission and enhanced color stability in a single-component host. ACS Appl Mater Interfaces 10:18066–18072. https://doi.org/10.1021/acsami.8b02716

    Article  CAS  PubMed  Google Scholar 

  13. Ooyama Y, Yagi S (2021) Progress in the science of functional dyes. https://doi.org/10.1007/978-981-33-4392-4

    Book  Google Scholar 

  14. Kundu S, Sk B, Pallavi P, Giri A, Patra A (2020) Molecular engineering approaches towards all-organic white light emitting materials. Chem A Eur J 26:5557–5582. https://doi.org/10.1002/chem.201904626

    Article  CAS  Google Scholar 

  15. Geng WC, Liu YC, Wang YY, Xu Z, Zheng Z, Yang CB et al (2017) A self-assembled white-light-emitting system in aqueous medium based on a macrocyclic amphiphile. Chem Commun 53:392–395. https://doi.org/10.1039/c6cc09079f

    Article  CAS  Google Scholar 

  16. Ki W, Li J, Eda G, Chhowalla M (2010) Direct white light emission from inorganic-organic hybrid semiconductor bulk materials. J Mater Chem 20:10676–10679. https://doi.org/10.1039/c0jm02213f

    Article  CAS  Google Scholar 

  17. Yang QY, Wu K, Jiang JJ, Hsu CW, Pan M, Lehn JM et al (2014) Pure white-light and yellow-to-blue emission tuning in single crystals of Dy (III) metal–organic frameworks. Chem Commun 50:7702–7704. https://doi.org/10.1039/c4cc01763c

    Article  CAS  Google Scholar 

  18. Sun CY, Wang XL, Zhang X, Qin C, Li P, Su ZM et al (2013) Efficient and tunable white-light emission of metal-organic frameworks by iridium-complex encapsulation. Nat Commun 4:1–8. https://doi.org/10.1038/ncomms3717

    Article  CAS  Google Scholar 

  19. Sessolo M, Tordera D, Bolink HJ (2013) Ionic iridium complex and conjugated polymer used to solution-process a bilayer white light-emitting diode. ACS Appl Mater Interfaces 5:630–634. https://doi.org/10.1021/am302033k

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, **e C, Su H, Liu J, Pickering S, Wang Y et al (2011) Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes. Nano Lett 11:329–332. https://doi.org/10.1021/nl1021442

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Ledemi Y, Trudel AA, Rivera VAG, Chenu S, Véron E, Nunes LA et al (2014) White light and multicolor emission tuning in triply doped Yb 3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics. J Mater Chem C 2:5046–5056. https://doi.org/10.1039/c4tc00455h

    Article  CAS  Google Scholar 

  22. Chen W, Zhuang Y, Wang L, Lv Y, Liu J, Zhou TL et al (2018) Color-tunable and high-efficiency dye-encapsulated metal-organic framework composites used for smart white-light-emitting diodes. ACS Appl Mater Interfaces 10:18910–18917. https://doi.org/10.1021/acsami.8b04937

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Su Q, Chen S (2020) Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nat Commun 11:1–8. https://doi.org/10.1038/s41467-020-16659-x

    Article  ADS  CAS  Google Scholar 

  24. Fan L, Liu K, Zeng Q, Li M, Cai H, Zhou J et al (2021) Efficiency-tunable single-component white-light emission realized in hybrid halides through metal co-occupation. ACS Appl Mater Interfaces 13:29835–29842. https://doi.org/10.1021/acsami.1c07636

    Article  CAS  Google Scholar 

  25. D’Andrade BW, Forrest SR (2004) White organic light-emitting devices for solid-state lighting. Adv Mater 16:1585–1595. https://doi.org/10.1002/adma.200400684

    Article  CAS  Google Scholar 

  26. Farinola GM, Ragni R (2011) Electroluminescent materials for white organic light emitting diodes. Chem Soc Rev 40(7):3467–3482. https://doi.org/10.1039/c0cs00204f

    Article  CAS  PubMed  Google Scholar 

  27. Smet PF, Parmentier AB, Poelman D (2011) Selecting conversion phosphors for white light-emitting diodes. J Electrochem Soc 158:R37. https://doi.org/10.1149/1.3568524

    Article  CAS  Google Scholar 

  28. Liu Z, Wang Q, Li M, Ai Y, Pan H, Li P et al (2020) White light emission from single natural molecules: solvatochromic properties of 10-hydroxycamptothecin. Dye Pigment 180:108533. https://doi.org/10.1016/j.dyepig.2020.108533

    Article  CAS  Google Scholar 

  29. Singh V, Mishra AK (2015) White light emission from vegetable extracts. Sci Rep 5:1–9. https://doi.org/10.1038/srep11118

    Article  CAS  Google Scholar 

  30. Shi Q, Xu S, Yang B, Duan S, Li S, Zhang D et al (2020) White light emission from a single plant source extract with tunable photoluminescence. Spectrochim Acta Part A Mol Biomol Spectrosc 236:118352. https://doi.org/10.1016/j.saa.2020.118352

    Article  CAS  Google Scholar 

  31. John J, Abraham R, Jayakrishnan R, Thomas V (2022) Resonant energy transfer between plasmonic silver and biomolecule for colour tuning and white light emission. JCIS Open 8:100065. https://doi.org/10.1016/j.jciso.2022.100065

    Article  Google Scholar 

  32. Roy P, Periasamy AP, Chuang C, Liou YR, Chen YF, Joly J et al (2014) Plant leaf-derived graphene quantum dots and applications for white LEDs. New J Chem 38:4946–4951. https://doi.org/10.1039/c4nj01185f

    Article  CAS  Google Scholar 

  33. Kakegawa N, Ogawa M (2002) The intercalation of β-carotene into the organophilic interlayer space of dialkyldimethylammonium-montmorillonites. Appl Clay Sci 22:137–144. https://doi.org/10.1016/S0169-1317(02)00145-X

    Article  CAS  Google Scholar 

  34. Guesmi A, Ladhari N, Ben HN, Sakli F (2012) Isolation, identification and dyeing studies of betanin on modified acrylic fabrics. Ind Crops Prod 37:342–346. https://doi.org/10.1016/j.indcrop.2011.12.034

    Article  CAS  Google Scholar 

  35. Lazăr S, Constantin OE, Stănciuc N, Aprodu I, Croitoru C, Râpeanu G (2021) Optimization of betalain pigments extraction using beetroot by-products as a valuable source. Inventions 6:1–11. https://doi.org/10.3390/inventions6030050

    Article  Google Scholar 

  36. Sandquist C, McHale JL (2011) Improved efficiency of betanin-based dye-sensitized solar cells. J Photochem Photobiol A Chem 221:90–97. https://doi.org/10.1016/j.jphotochem.2011.04.030

    Article  CAS  Google Scholar 

  37. Riaz RS, Elsherif M, Moreddu R, Rashid I, Hassan MU, Yetisen AK et al (2019) Anthocyanin-functionalized contact lens sensors for ocular pH monitoring. ACS Omega 4:21792–21798. https://doi.org/10.1021/acsomega.9b02638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cherepy NJ, Smestad GP, Grätzel M, Zhang JZ (1997) Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode. J Phys Chem B 101:9342–9351. https://doi.org/10.1021/jp972197w

    Article  CAS  Google Scholar 

  39. Fikselová M, Šilhár S, Mareček J, Frančáková H (2008) Extraction of carrot (Daucus carota L.) carotenes under different conditions. Czech J Food Sci 26:268–274. https://doi.org/10.17221/9/2008-cjfs

    Article  Google Scholar 

  40. Sharmin T, Ahmed N, Hossain A, Hosain MM, Mondal SC, Haque MR, Almas M (2016) Extraction of bioactive compound from some fruits and vegetables (pomegranate peel, carrot and tomato). Am J Food Nutr 4:8–19. https://doi.org/10.12691/ajfn-4-1-2

    Article  CAS  Google Scholar 

  41. Lakowicz JR (2006). Principles of fluorescence spectroscopy. https://doi.org/10.1007/978-0-387-46312-4

    Article  ADS  Google Scholar 

  42. Hudu A, Saeed SA, Gumel SM (2020) Studies on the dyeing properties of cotton and antimicrobial activity of natural colourant extracted from Beta vulgaris (Beetroot). Earthline J Chem Sci 4:53–66

    Article  CAS  Google Scholar 

  43. Munawaroh H, Adillah GF, Saputri LNMZ, Hanif QA, Hidayat R, Wahyuningsih S (2016) The co-pigmentation of anthocyanin isolated from mangosteen pericarp (Garcinia Mangostana L.) as natural dye for dye- sensitized solar cells (DSSC). IOP Conf Ser Mater Sci Eng 107(1):012061. https://doi.org/10.1088/1757-899X/107/1/012061

    Article  Google Scholar 

  44. Wahyuningsih S, Wulandari L, Wartono MW, Munawaroh H, Ramelan AH (2017) The effect of pH and color stability of anthocyanin on food colorant. IOP Conf Ser Mater Sci Eng 193(1):012047. https://doi.org/10.1088/1757-899X/193/1/012047

    Article  Google Scholar 

  45. Saha N, Samanta AK, Chaudhuri S, Dutta D (2015) Characterization and antioxidant potential of a carotenoid from a newly isolated yeast. Food Sci Biotechnol 24:117–124. https://doi.org/10.1007/s10068-015-0017-z

    Article  CAS  Google Scholar 

  46. Iriel A, Lagorio MG (2009) Biospectroscopy of Rhododendron indicum flowers. Non-destructive assessment of anthocyanins in petals using a reflectance-based method. Photochem Photobiol Sci 8:337–344. https://doi.org/10.1039/b814461c

    Article  CAS  PubMed  Google Scholar 

  47. Koli P, Pareek RK, Dayma Y, Kumar R (2022) Beetroot’s crude aqueous extract photosensitizer-formic acid-sodium lauryl sulphate photogalvanic electrolyte: solar power and storage. Bioresour Technol Rep 18:101083. https://doi.org/10.1016/j.biteb.2022.101083

    Article  CAS  Google Scholar 

  48. ** Mn2+ for white-light-emitting diode applications. J Phys Chem C 117:20847–20854. https://doi.org/10.1021/jp4062225

    Article  CAS  Google Scholar 

  49. Eliseeva SV, Bünzli JCG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227. https://doi.org/10.1039/b905604c

    Article  CAS  PubMed  Google Scholar 

  50. Tang Y, **a T, Song T, Cui Y, Yang Y, Qian G (2018) Efficient energy transfer within dyes encapsulated metal-organic frameworks to achieve high performance white light-emitting diodes. Adv Opt Mater 6:1–6. https://doi.org/10.1002/adom.201800968

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Chandigarh University for providing a wet lab and other infrastructure. We are also grateful to SAIF, Panjab University, for providing an experimental facility. Special thanks to Dr. Manjari Chakraborty, Sr. project scientist, for hel** us record the fluorescence lifetime in the SATHI facility at IIT Delhi.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

K.D. had conducted experiments, analyzed the data, and wrote the manuscript. V.A., P.K. and V.M. initiated the research concept, designed the methodology, and contributed to the writing editing of the manuscript. Y.B and R.M. provided guidance in the experimental design or data analysis.

Corresponding authors

Correspondence to Prashant Kumar or Vishal Mutreja.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6290 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, K., Anand, V., Barot, Y. et al. Natural Pigments-Based Two-Component White Light Emitting Systems. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03624-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03624-w

Keywords

Navigation