Log in

Dual Fluorimetric Sensor for Tandem Detection of Cadmium and Cysteine: An Approach for Designing a Molecular Keypad Lock System

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A fluorimetric sensor for dual and sensitive detection of Cd2+ ion and Cysteine (based on 2-picolylamine platform) was developed.The sensor was designed and synthesized by simple condensation method and characterized by using common spectroscopic methods. The observations made from the kinetics of absorption and emission profile shows that probe Pdac behaves as ‘‘ON–OFF’’ fluorescent quenching sensor for cadmium ions. The probe exhibit selectivity in fluorescence quenching behaviour over other competitive metal ions, and also the Pdac-Cd2+ ensemble behave as an efficient ‘‘OFF–ON’’ type sensor for an essential amino acid Cysteine. Moreover, this dual sensing nature of the sensor makes it successfully applied for the designing of a molecular keypad lock system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

“Not applicable” to the content of this manuscript.

References

  1. Lehn JM (1978) No Pure and Applied Chemistry 50:871–892

    Article  CAS  Google Scholar 

  2. Cram DJ (1985) International Edition in English. Angew Chem, Int Ed Engl 24:799–810

    Google Scholar 

  3. Yin Y, Chen Z, Li RH, Yuan C, Shao TY, Wang K, Tan H, Sun Y (2021) Ligand-Triggered Platinum(II) Metallacycle with Mechanochromic and Vapochromic Responses. Inorg Chem 60(13):9387–9393. https://doi.org/10.1021/acs.inorgchem.1c00233

    Article  CAS  PubMed  Google Scholar 

  4. Chen Z, Qin H, Yin Y, Deng DD, Qin SY, Li N, Wang K (2023) Full-Color Emissive D-D-A Carbazole Luminophores: Red-to-NIR Mechano-fluorochromism, Aggregation-Induced Near-Infrared Emission, and Application in Photodynamic Therapy. Chem Eur J 29:11. https://doi.org/10.1002/chem.202203797

    Article  CAS  Google Scholar 

  5. Yin Y, Chen Z, Li RH, Yi F, Liang XC, Cheng SQ, Wang K, Sun Y (2022) Liu Y Highly Emissive Multipurpose Organoplatinum(II) Metallacycles with Contrasting Mechanoresponsive Features. Inorg Chem 61(6):2883–2891. https://doi.org/10.1021/acs.inorgchem.1c03563

    Article  CAS  PubMed  Google Scholar 

  6. Taki M, Desaki M, Ojida A, Iyoshi S, Hirayama T, Hamachi I, Yamamoto Y (2008) Fluorescence imaging of intracellular Cadmium Using a Dual-Excitation Ratiometric Chemosensor. J Am Chem Soc 130:12564–12565. https://doi.org/10.1021/ja803429z

    Article  CAS  PubMed  Google Scholar 

  7. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137(1–2):65–83

    Article  CAS  PubMed  Google Scholar 

  8. Faller P, Kienzler K, Krieger-Liszkay A (2005) Mechanism of Cd 2+ Toxicity: Cd 2+ Inhibits Photoactivation of Photosystem II by Competitive Binding to the Essential Ca 2+ Site. Biochim Biophys Acta Bioenerg 1706:158–164. https://doi.org/10.1016/j.bbabio.2004.10.005

    Article  CAS  Google Scholar 

  9. Peng X, Du J, Fan J, Wang J, Wu Y, Zhao J, Sun S, Xu T (2007) A selective fluorescent sensor for imaging Cd2+ in living cells. J Am Chem Soc 129:1500–1501. https://doi.org/10.1021/ja0643319

    Article  CAS  PubMed  Google Scholar 

  10. Chen H, Gao W, Zhu M, Gao H, Xue J, Li Y (2010) A Highly Selective OFF-ON Fluorescent Sensor for Zinc in Aqueous Solution and Living Cells. Chem Commun 46:8389–8391. https://doi.org/10.1039/c0cc02134b

    Article  CAS  Google Scholar 

  11. Liu Z, Zhang C, He W, Yang Z, Gao X, Guo Z (2010) A highly sensitive ratiometric fluorescent probe for Cd2+ detection in aqueous solution and living cells. Chem Commun 46:6138–6140. https://doi.org/10.1039/c0cc00662a

    Article  CAS  Google Scholar 

  12. Li J, Chen Y, Chen T, Qiang J, Zhang Z, Wei T, Zhang W, Wang F, Chen X (2018) A Benzothiazole-based fluorescent probe for efficient detection and discrimination of Zn2+ and Cd2+, using cysteine as an auxiliary reagent. Sens Actuators B Chem 268:446–455. https://doi.org/10.1016/j.snb.2018.04.130

    Article  CAS  Google Scholar 

  13. Wang XF, Cynader MS (2001) Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity. J Neurosci 21:3322–3331. https://doi.org/10.1523/jneurosci.21-10-03322.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu J, Yeo HC, Övervik-Douki E, Hagen T, Doniger SJ, Chu DW, Brooks GA, Ames BN (2000) Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol 89:21–28. https://doi.org/10.1152/jappl.2000.89.1.21

    Article  CAS  PubMed  Google Scholar 

  15. Goodman MT, McDuffie K, Hernandez B, Wilkens LR, Selhub J (2000) Case-Control Study of Plasma Folate, Homocysteine, Vitamin B12, and Cysteine as Markers of Cervical Dysplasia. Cancer 89:376–382. https://doi.org/10.1002/1097-0142(20000715)89:2%3c376::AID-CNCR24%3e3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  16. Herzenberg LA, De Rosa SC, Dubs JG, Roederer M, Anderson MT, Ela SW, Deresinski SC, Herzenberg LA (1997) Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci U S A 94:1967–1972. https://doi.org/10.1073/pnas.94.5.1967

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155. https://doi.org/10.1016/S0753-3322(03)00043-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shahrokhian S (2001) Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem 73:5972–5978. https://doi.org/10.1021/ac010541m

    Article  CAS  PubMed  Google Scholar 

  19. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MBD, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468:790–797. https://doi.org/10.1038/nature09472

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang X, Lu J, Ren X, Du Y, Zheng Y, Ioannou PV, Holmgren A (2015) Oxidation of Structural Cysteine Residues in Thioredoxin 1 by Aromatic Arsenicals Enhances Cancer Cell Cytotoxicity Caused by the Inhibition of Thioredoxin Reductase 1. Free Radic Biol Med 89:192–200. https://doi.org/10.1016/j.freeradbiomed.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  21. Reddie KG, Carroll KS (2008) Expanding the Functional Diversity of Proteins through Cysteine Oxidation. Curr Opin Chem Biol 12:746–754. https://doi.org/10.1016/j.cbpa.2008.07.028

    Article  CAS  PubMed  Google Scholar 

  22. Shao N, ** JY, Cheung SM, Yang RH, Chan WH, Mo T (2006) A Spiropyran-Based Ensemble for Visual Recognition and Quantification of Cysteine and Homocysteine at Physiological Levels. Angew Chem 118:5066–5070. https://doi.org/10.1002/ange.200600112

    Article  ADS  Google Scholar 

  23. Li YA, Zhao CW, Zhu NX, Liu QK, Chen GJ, Liu JB, Zhao XD, Ma JP, Zhang S, Dong Y (2015) Bin nanoscale UiO-MOF-based luminescent sensors for highly selective detection of cysteine and glutathione and their application in bioimaging. Chem Commun 51:17672–17675. https://doi.org/10.1039/c5cc07783d

    Article  CAS  Google Scholar 

  24. Refsum H, Ueland PM, Nygård O (1998) Vollset SE homocysteine and cardiovascular disease. J Am Board Fam Med 11:391–398. https://doi.org/10.3122/15572625-11-5-391

    Article  Google Scholar 

  25. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PWF, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and alzheimer’s disease. N Engl J Med 346:476–483

    Article  CAS  PubMed  Google Scholar 

  26. Ivanov AR, Nazimov IV, Baratova LA (2000) Qualitative and quantitative determination of biologically active low-molecular-mass thiols in human blood by reversed-phase high-performance liquid chromatography with photometry and fluorescence detection. J Chromatogr A 870:433–442. https://doi.org/10.1016/S0021-9673(99)00947-4

    Article  CAS  PubMed  Google Scholar 

  27. Ivanov AR, Nazimov IV, Baratova L (2000) Determination of Biologically active low-molecular-mass thiols in human blood - I. Fast qualitative and quantitative, gradient and isocratic reversed-phase high-performance liquid chromatography with photometric and fluorescence detection. J Chromatogr A 895:157–166. https://doi.org/10.1016/S0021-9673(00)00713-5

    Article  CAS  PubMed  Google Scholar 

  28. Wen M, Liu H, Zhang F, Zhu Y, Liu D, Tian Y, Wu Q (2009) Amorphous FeNiPt Nanoparticles with Tunable Length for Electrocatalysis and Electrochemical Determination of Thiols. ChemComm 4530–4532. https://doi.org/10.1039/b907379e

  29. Zhu J, Dhimitruka I, Pei D (2004) 5-(2-Aminoethyl)Dithio-2-Nitrobenzoate as a More Base-Stable Alternative to Ellman’s Reagent. Org Lett 6:3809–3812. https://doi.org/10.1021/ol048404+

    Article  CAS  PubMed  Google Scholar 

  30. Inoue T, Kirchhoff JR (2000) Electrochemical detection of thiols with a coenzyme pyrroloquinoline quinone modified electrode. Anal Chem 72:5755–5760. https://doi.org/10.1021/ac000716c

    Article  CAS  PubMed  Google Scholar 

  31. Li H, Fan J, Wang J, Tian M, Du J, Sun S, Sun P, Peng X (2009) A fluorescent chemodosimeter specific for cysteine: effective discrimination of cysteine from homocysteine. Chem Commun 5904–5906. https://doi.org/10.1039/b907511a

  32. Wang SP, Deng WJ, Sun D, Yan M, Zheng H, Xu JG (2009) A colorimetric and fluorescent merocyanine-based probe for biological thiols. Org Biomol Chem 7:4017–4020. https://doi.org/10.1039/b909760k

    Article  CAS  PubMed  Google Scholar 

  33. Jung JM, Kim C, Harrison RG (2017) A dual sensor selective for Hg2+ and cysteine detection. Sens Actuators B Chem 255:2756–2763. https://doi.org/10.1016/j.snb.2017.09.090

    Article  CAS  Google Scholar 

  34. Lin Q, Huang Y, Fan J, Wang R, Fu N (2013) A squaraine and Hg2+-based colorimetric and “turn on” fluorescent probe for cysteine. Talanta 114:66–72. https://doi.org/10.1016/j.talanta.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Cui P, Zhang F, Feng X, Wang Y, Yang Y, Liu X (2016) Fluorescent probes for “off-on” highly sensitive detection of Hg2+ and l-cysteine based on nitrogen-doped carbon dots. Talanta 152:288–300. https://doi.org/10.1016/j.talanta.2016.02.018

    Article  CAS  PubMed  Google Scholar 

  36. Cui Y, Hao Y, Zhang Y, Liu B, Zhu X, Qu P, Li D, Xu M (2016) A Water-Soluble and Retrievable Ruthenium-Based Probe for Colorimetric Recognition of Hg(II) and Cys. Spectrochim Acta A Mol Biomol Spectrosc 165:150–154. https://doi.org/10.1016/j.saa.2016.04.011

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Manna S, Karmakar P, Ali SS, Guria UN, Samanta SK, Sarkar R, Datta P, Mahapatra AK (2019) A highly selective ICT-based fluorescent probe for cysteine sensing and its application in living cell imaging. Anal Methods 11:1192–1198. https://doi.org/10.1039/c8ay02651c

    Article  CAS  Google Scholar 

  38. Yuan L, Lin W, Yang Y (2011) A ratiometric fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on the drastic distinction in the kinetic profiles. Chem Commun 47:6275–6277. https://doi.org/10.1039/c1cc11316j

    Article  CAS  Google Scholar 

  39. Yang X, Guo Y, Strongin RM (2011) Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew Chem Int Ed 50:10690–10693. https://doi.org/10.1002/anie.201103759

    Article  CAS  Google Scholar 

  40. Wang H, Zhou G, Gai H, Zhou X (2012) A fluorescein-based probe with high selectivity to cysteine over homocysteine and glutathione. Chem Commun 48:8341–8343. https://doi.org/10.1039/c2cc33932c

    Article  CAS  Google Scholar 

  41. Yang Y, Feng Y, Qiu F, Iqbal K, Wang Y, Song X, Zhang G, Liu W (2018) Dual-site and dual-excitation fluorescent probe that can be tuned for discriminative detection of cysteine, homocystein, and thiophenols. Anal Chem 90:14048–14055. https://doi.org/10.1021/acs.analchem.8b04163

    Article  CAS  PubMed  Google Scholar 

  42. Cheng T, Wang T, Zhu W, Chen X, Yang Y, Xu Y, Qian X (2011) Red-emission fluorescent probe sensing cadmium and pyrophosphate selectively in aqueous solution. Org Lett 13:3656–3659. https://doi.org/10.1021/ol201305d

    Article  CAS  PubMed  Google Scholar 

  43. Anand T, Sivaraman G, Chellappa D (2014) Hg2+ mediated quinazoline ensemble for highly selective recognition of cysteine. Spectrochim Acta A Mol Biomol Spectrosc 123:18–24. https://doi.org/10.1016/j.saa.2013.12.054

    Article  CAS  PubMed  Google Scholar 

  44. Namitha PP, Saji A, Francis S, Rajith L (2020) Water soluble porphyrin for the fluorescent determination of cadmium ions. J Fluoresc 30:527–535

    Article  CAS  PubMed  Google Scholar 

  45. Kim S-K, Lee J-H, Yoon J-Y (2003) Fluorescent PET chemosensor for cadmium Ions in 100% aqueous solution. Bull Korean Chem Soc 24(7):1032–1034

    Article  CAS  Google Scholar 

  46. Farhi A, Firdaus F, Shakir M (2018) Design and application of a tripodal on-off type chemosensor for discriminative and selective detection of Fe2+ ions. New J Chem 42:6161–6167. https://doi.org/10.1039/c8nj00214b

    Article  CAS  Google Scholar 

  47. Farhi A, Firdaus F, Saeed H, Mujeeb A, Shakir M, Owais M (2019) A quinoline-based fluorescent probe for selective detection and real-time monitoring of copper ions-a differential colorimetric approach. Photochem Photobiol Sci 18:3008–3015. https://doi.org/10.1039/c9pp00247b

    Article  CAS  PubMed  Google Scholar 

  48. Firdaus F, Farhi A, Faraz M, Shakir M (2018) Benzidine based fluorescent probe for the sensitive detection of heavy metal ions via chelation enhanced fluorescence mechanism—a multiplexed sensing platform. J Lumin 199:475–482. https://doi.org/10.1016/j.jlumin.2018.03.083

    Article  CAS  Google Scholar 

  49. Mikata Y, Kaneda M, Tanaka M, Iwatsuki S, Konno H, Matsumoto A (2020) A Tetrakisquinoline Analog of Calcium Indicator Quin2 for Fluorescence Detection of Cd2+. Eur J Inorg Chem 9:757–63. https://doi.org/10.1002/ejic.201901323

    Article  CAS  Google Scholar 

  50. Lu C, Xu Z, Cui J, Zhang R, Qian X (2007) Ratiometric and highly selective fluorescent sensor for cadmium under physiological pH range: a new strategy to discriminate cadmium from zinc. J Org Chem 72(9):3554–3557

    Article  CAS  PubMed  Google Scholar 

  51. Panáček D, Zdražil L, Langer M, Šedajová V, Baďura Z, Zoppellaro G, Yang Q, Nguyen EP, Álvarez-Diduk R, Hrubý V, Kolařík J (2022) Graphene nanobeacons with high-affinity pockets for combined, selective, and effective decontamination and reagentless detection of heavy metals. Small 33:2201003

    Article  Google Scholar 

  52. Tang Y, Liu H, Jiang G, Gu Z (2017) Highly selective recognition of Cd 2+ by an indole derivative chemosensor. J Appl Spectrosc 84:911–914

    Article  ADS  CAS  Google Scholar 

  53. Huang M, Cai-Hua L, Qing-Da H, Jia-** L, Hui S (2019) A novel and fast responsive turn-on fluorescent probe for the highly selective detection of Cd 2+ based on photo-induced electron transfer. RSC Adv 9(62):36011–36019

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Makwana BA, Vyas DJ, Bhatt KD, Darji S, Jain VK (2016) Novel fluorescent silver nanoparticles: sensitive and selective turn off sensor for cadmium ions. Appl Nanosci 6:555–566

    Article  ADS  CAS  Google Scholar 

  55. Dai Y, Yao K, Fu J, Xue K, Yang L, Xu K (2017) A novel 2-(hydroxymethyl) quinolin-8-ol-based selective and sensitive fluorescence probe for Cd2+ ion in water and living cells. Sens Actuators, B Chem 251:877–884

    Article  CAS  Google Scholar 

  56. Tang Y, Huang Y, Chen Y, Lu L, Wang C, Sun T, Wang M, Zhu G, Yang Y, Zhang L, Zhu J (2019) A coumarin derivative as a “turn-on” fluorescence probe toward Cd2+ in live cells. Spectrochim Acta Part A Mol Biomol Spectrosc 218:359–365

    Article  ADS  CAS  Google Scholar 

  57. Diana R, Caruso U, Concilio S, Piotto S, Tuzi A, Panunzi B (2018) A real-time tripodal colorimetric/fluorescence sensor for multiple target metal ions. Dyes Pigm 155:249–257

    Article  CAS  Google Scholar 

  58. Zhang X, Wang R, Fan C, Liu G, Pu S (2017) A highly selective fluorescent sensor for Cd2+ based on a new diarylethene with a 1, 8-naphthyridine unit. Dyes Pigm 139:208–217

    Article  CAS  Google Scholar 

  59. Wang Z, Cui S, Qiu S, Pu S (2018) A new fluorescence probe based on diarylethene with a benzothiazine unit for selective detection of Cd2+. Tetrahedron 74(52):7431–7437

    Article  CAS  Google Scholar 

  60. Fu Y, Li H, Hu W, Zhu D (2005) Fluorescence probes for thiol-containing amino acids and peptides in aqueous solution. ChemComm 3189–3191. https://doi.org/10.1039/b503772g

  61. Guo Z, Nam S, Park S, Yoon J (2012) A highly selective ratiometric near-infrared fluorescent cyanine sensor for cysteine with remarkable shift and its application in bioimaging. Chem Sci 3:2760–2765. https://doi.org/10.1039/c2sc20540h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Chairman, Department of chemistry, Aligarh Muslim University, Aligarh, and University Grants Commission (UGC ), India is acknowledged for providing necessary research facilities. The author, Atika Farhi is specially thankful to CSIR(Council of Scientific and Industrial Research) for awarding prestigious SRF(Senior Research Fellowship). The facilities given to the department under SAP-DRS-II PURSE and FIST programs are also highly acknowledged.

Funding

This research is not funded by any scientific body, so “not applicable”.

Author information

Authors and Affiliations

Authors

Contributions

F.F; Corresponding author : Supervision. A. F; First author: Idea, visualization, manuscript writing, experimental analysis, data collection. K. F; Second Author: Sample handling, Analysis and investigation.

Corresponding authors

Correspondence to Atika Farhi or Farha Firdaus.

Ethics declarations

Ethical Approval

“Not applicable”.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1387 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhi, A., Fatima, K. & Firdaus, F. Dual Fluorimetric Sensor for Tandem Detection of Cadmium and Cysteine: An Approach for Designing a Molecular Keypad Lock System. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03588-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03588-x

Keywords

Navigation