Log in

Recent Advances in NIR or X-ray Excited Persistent Luminescent Materials for Deep Bioimaging

  • Review
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Due to their persistent luminescence, persistent luminescent (PersL) materials have attracted great interest. In the biomedical field, the use of persistent luminescent nanoparticles (PLNPs) eliminates the need for continuous in situ excitation, thereby avoiding interference from tissue autofluorescence and significantly improving the signal-to-noise ratio (SNR). Although persistent luminescence materials can emit light continuously, the luminescence intensity of small-sized nanoparticles in vivo decays quickly. Early persistent luminescent nanoparticles were mostly excited by ultraviolet (UV) or visible light and were administered for imaging purposes through ex vivo charging followed by injection into the body. Limited by the low in vivo penetration depth, UV light cannot secondary charge PLNPs that have decayed in vivo, and visible light does not penetrate deep enough to reach deep tissues, which greatly limits the imaging time of persistent luminescent materials. In order to address this issue, the development of PLNPs that can be activated by light sources with superior tissue penetration capabilities is essential. Near-infrared (NIR) light and X-rays are widely recognized as ideal excitation sources, making persistent luminescent materials stimulated by these two sources a prominent area of research in recent years. This review describes NIR and X-ray excitable persistent luminescence materials and their recent advances in bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not available.

References

  1. Liu Y, Kuang J, Lei B, Shi C (2005) Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors. J Mater Chem 15(37). https://doi.org/10.1039/b507774e

  2. Wei X, Huang X, Zeng Y et al (2020) Longer and stronger: improving persistent luminescence in size-tuned zinc gallate nanoparticles by alcohol-mediated chromium do**. ACS Nano 14(9):12113–12124. https://doi.org/10.1021/acsnano.0c05655

    Article  CAS  PubMed  Google Scholar 

  3. Liu J, Liang Y, Yan S et al (2021) Sunlight-activated long persistent luminescence in the ultraviolet-B spectral region from Bi3+-doped garnet phosphors for covert optical tagging. J Mater Chem C 9(30):9692–9701. https://doi.org/10.1039/d1tc01922h

    Article  CAS  Google Scholar 

  4. Hölsä J (2009) Persistent luminescence beats the afterglow: 400 years of persistent luminescence. Electrochem Soc Inte 18(4):42–45. https://doi.org/10.1149/2.F06094if

    Article  Google Scholar 

  5. Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y (2019) A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+. J Electrochem Soc 143(8):2670–2673. https://doi.org/10.1149/1.1837067

    Article  Google Scholar 

  6. Shi C, Fu Y, Liu B et al (2007) The roles of Eu2+ and Dy3+ in the blue long-lasting phosphor Sr2MgSi2O7:Eu2+,Dy3+. J Lumin 122–123:11–13. https://doi.org/10.1016/j.jlumin.2006.01.066

    Article  CAS  Google Scholar 

  7. Lin L, Shi C, Wang Z, Zhang W, Yin M (2008) A kinetics model of red long-lasting phosphorescence in MgSiO3:Eu2+, Dy3+, Mn2+. J Alloy Compd 466(1–2):546–550. https://doi.org/10.1016/j.jallcom.2007.11.093

    Article  CAS  Google Scholar 

  8. Aitasalo T, Hölsä J, Kirm M et al (2007) Persistent luminescence and synchrotron radiation study of the Ca2MgSi2O7:Eu2+,R3+ materials. Radiat Meas 42(4–5):644–647. https://doi.org/10.1016/j.radmeas.2007.01.058

    Article  CAS  Google Scholar 

  9. Dorenbos P (2005) Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds. J Electrochem Soc 152(7). https://doi.org/10.1149/1.1926652

  10. le Masne de Chermont Q, Chaneac C, Seguin J et al (2007) Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc Natl Acad Sci U S A 104(22):9266–9271. https://doi.org/10.1073/pnas.0702427104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aitasalo T, Holsa J, Jungner H, Lastusaari M, Niittykoski J (2006) Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+. J Phys Chem B 110(10):4589–4598. https://doi.org/10.1021/jp057185m

    Article  CAS  PubMed  Google Scholar 

  12. Das S, Sharma SK, Manam J (2022) Near infrared emitting Cr3+ doped Zn3Ga2Ge2O10 long persistent phosphor for night vision surveillance and anti-counterfeit applications. Ceram Int 48(1):824–831. https://doi.org/10.1016/j.ceramint.2021.09.163

    Article  CAS  Google Scholar 

  13. Zhu K, Chen Z, Wang Y et al (2022) (M,ca)AlSiN3:Eu2+ (M = sr, mg) long persistent phosphors prepared by combustion synthesis and applications in displays and optical information storage. J Lumin 252. https://doi.org/10.1016/j.jlumin.2022.119288

  14. Chen LJ, Sun SK, Wang Y et al (2016) Activatable multifunctional persistent luminescence nanoparticle/copper sulfide nanoprobe for in vivo luminescence imaging-guided photothermal therapy. ACS Appl Mater Interfaces 8(48):32667–32674. https://doi.org/10.1021/acsami.6b10702

    Article  CAS  PubMed  Google Scholar 

  15. Fan W, Lu N, Xu C et al (2017) Enhanced afterglow performance of persistent luminescence implants for efficient repeatable photodynamic therapy. ACS Nano 11(6):5864–5872. https://doi.org/10.1021/acsnano.7b01505

    Article  CAS  PubMed  Google Scholar 

  16. Yang L, Gai S, Ding H et al (2023) Recent progress in inorganic afterglow materials: mechanisms, persistent luminescent properties, modulating methods, and bioimaging applications. Adv Opt Mater. https://doi.org/10.1002/adom.202202382

    Article  Google Scholar 

  17. Maldiney T, Scherman D, Richard C (2012) Persistent luminescence nanoparticles for diagnostics and imaging. Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices Volume 2. ACS Symposium Series, vol 1113: American Chemical Society; p. 1–25

  18. Teston E, Maldiney T, Marangon I et al (2018) Nanohybrids with magnetic and persistent luminescence properties for cell labeling, tracking, in vivo real-time imaging, and magnetic vectorization. Small 14(16):e1800020. https://doi.org/10.1002/smll.201800020

    Article  CAS  PubMed  Google Scholar 

  19. Lecuyer T, Teston E, Ramirez-Garcia G et al (2016) Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 6(13):2488–2524. https://doi.org/10.7150/thno.16589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu J, Lecuyer T, Seguin J et al (2019) Imaging and therapeutic applications of persistent luminescence nanomaterials. Adv Drug Deliv Rev 138:193–210. https://doi.org/10.1016/j.addr.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  21. Viana B, Richard C, Castaing V et al (2020) NIR-persistent luminescence nanoparticles for bioimaging, principle and perspectives. In: Benayas A, Hemmer E, Hong G, Jaque D (eds) Near infrared-emitting nanoparticles for biomedical applications. Springer International Publishing, Cham, pp 163–197

    Chapter  Google Scholar 

  22. Cai G, Delgado T, Richard C, Viana B (2023) ZGSO spinel nanoparticles with dual emission of Nir persistent luminescence for anti-counterfeiting applications. Mater (Basel) 16(3). https://doi.org/10.3390/ma16031132

  23. Cai G, Delgado T, Richard C, Viana B (2023) Transition metal and rare earth doped Zn1.3Ga1.4Sn0.3O4 persistent phosphors for anti-counterfeiting applications. SPIE OPTO. SPIE. https://doi.org/10.1117/12.2649803

  24. Schnermann MJ (2017) Chemical biology: Organic dyes for deep bioimaging. Nature 551(7679):176–177. https://doi.org/10.1038/nature24755

    Article  CAS  PubMed  Google Scholar 

  25. Li B, Zhao M, Zhang F (2020) Rational design of near-infrared-II organic molecular dyes for bioimaging and biosensing. ACS Mater Lett 2(8):905–917. https://doi.org/10.1021/acsmaterialslett.0c00157

    Article  CAS  Google Scholar 

  26. Zhu S, Tian R, Antaris AL, Chen X, Dai H (2019) Near-infrared-II molecular dyes for cancer imaging and Surgery. Adv Mater 31(24):e1900321. https://doi.org/10.1002/adma.201900321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Song N, Li Y et al (2019) Comparative study of two near-infrared coumarin-BODIPY dyes for bioimaging and photothermal therapy of cancer. J Mater Chem B 7(30):4717–4724. https://doi.org/10.1039/c9tb01165j

    Article  CAS  PubMed  Google Scholar 

  28. Lei Z, Sun C, Pei P et al (2019) Stable, wavelength-tunable fluorescent dyes in the nir-ii region for in vivo high-contrast bioimaging and multiplexed biosensing. Angew Chem Int Ed Engl 58(24):8166–8171. https://doi.org/10.1002/anie.201904182

    Article  CAS  PubMed  Google Scholar 

  29. Zhou J, Yang Y, Zhang CY (2015) Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev 115(21):11669–11717. https://doi.org/10.1021/acs.chemrev.5b00049

    Article  CAS  PubMed  Google Scholar 

  30. Ma JJ, Yu MX, Zhang Z et al (2018) Gd-DTPA-coupled Ag2Se quantum dots for dual-modality magnetic resonance imaging and fluorescence imaging in the second near-infrared window. Nanoscale 10(22):10699–10704. https://doi.org/10.1039/c8nr02017e

    Article  CAS  PubMed  Google Scholar 

  31. Ge XL, Huang B, Zhang ZL et al (2019) Glucose-functionalized near-infrared Ag2Se quantum dots with renal excretion ability for long-term in vivo Tumor imaging. J Mater Chem B 7(38):5782–5788. https://doi.org/10.1039/c9tb01112a

    Article  CAS  PubMed  Google Scholar 

  32. Morselli G, Villa M, Fermi A, Critchley K, Ceroni P (2021) Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications. Nanoscale Horiz 6(9):676–695. https://doi.org/10.1039/d1nh00260k

    Article  CAS  PubMed  Google Scholar 

  33. Arshad A, Akram R, Iqbal S et al (2019) Aqueous synthesis of tunable fluorescent, semiconductor CuInS2 quantum dots for bioimaging. Arab J Chem 12(8):4840–4847. https://doi.org/10.1016/j.arabjc.2016.10.002

    Article  CAS  Google Scholar 

  34. Bai Y, Wang Y, Cao L et al (2021) Self-Targeting carbon quantum dots for peroxynitrite detection and imaging in live cells. Anal Chem 93(49):16466–16473. https://doi.org/10.1021/acs.analchem.1c03515

    Article  CAS  PubMed  Google Scholar 

  35. Kumar VB, Sher I, Rencus-Lazar S, Rotenstreich Y, Gazit E (2023) Functional carbon quantum dots for ocular imaging and therapeutic applications. Small 19(7):e2205754. https://doi.org/10.1002/smll.202205754

    Article  CAS  PubMed  Google Scholar 

  36. Zhao N, Wang Y, Hou S, Zhao L (2020) Functionalized carbon quantum dots as fluorescent nanoprobe for determination of tetracyclines and cell imaging. Mikrochim Acta 187(6):351. https://doi.org/10.1007/s00604-020-04328-1

    Article  CAS  PubMed  Google Scholar 

  37. Lu H, Li W, Dong H, Wei M (2019) Graphene quantum dots for optical bioimaging. Small 15(36):e1902136. https://doi.org/10.1002/smll.201902136

    Article  CAS  PubMed  Google Scholar 

  38. Campbell E, Hasan MT, Gonzalez-Rodriguez R et al (2021) Graphene quantum dot formulation for cancer imaging and redox-based drug delivery. Nanomedicine 37:102408. https://doi.org/10.1016/j.nano.2021.102408

    Article  CAS  PubMed  Google Scholar 

  39. Milenkovic M, Misovic A, Jovanovic D et al (2021) Facile synthesis of l-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent. Nanomaterials (Basel) 11(8). https://doi.org/10.3390/nano11081879

  40. He S, Chen S, Li D et al (2019) High affinity to skeleton rare earth doped nanoparticles for near-infrared II imaging. Nano Lett 19(5):2985–2992. https://doi.org/10.1021/acs.nanolett.9b00140

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Z, Yuan J, Zhao X et al (2019) Engineering the infrared luminescence and photothermal properties of double-shelled rare-earth-doped nanoparticles for biomedical applications. ACS Biomater Sci Eng 5(8):4089–4101. https://doi.org/10.1021/acsbiomaterials.9b00526

    Article  CAS  PubMed  Google Scholar 

  42. Qu Z, Shen J, Li Q et al (2020) Near-IR emissive rare-earth nanoparticles for guided Surgery. Theranostics 10(6):2631–2644. https://doi.org/10.7150/thno.40808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu Z, Eich C, Cruz LJ (2020) Recent advances in rare-earth-doped nanoparticles for nir-ii imaging and cancer theranostics. Front Chem 8:496. https://doi.org/10.3389/fchem.2020.00496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4(11):710–711. https://doi.org/10.1038/nnano.2009.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma Y, Chen Q, Pan X, Zhang J (2021) Insight into fluorescence imaging and bioorthogonal reactions in biological analysis. Top Curr Chem (Cham) 379(2):10. https://doi.org/10.1007/s41061-020-00323-5

    Article  CAS  PubMed  Google Scholar 

  46. Wu S, Li Y, Ding W et al (2020) Recent advances of persistent luminescence nanoparticles in bioapplications. Nanomicro Lett 12(1):70. https://doi.org/10.1007/s40820-020-0404-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maldiney T, Bessiere A, Seguin J et al (2014) The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat Mater 13(4):418–426. https://doi.org/10.1038/nmat3908

    Article  CAS  PubMed  Google Scholar 

  48. Maldiney T, Lecointre A, Viana B et al (2011) Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J Am Chem Soc 133(30):11810–11815. https://doi.org/10.1021/ja204504w

    Article  CAS  PubMed  Google Scholar 

  49. Maldiney T, Richard C, Seguin J et al (2011) Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 5(2):854–862. https://doi.org/10.1021/nn101937h

    Article  CAS  PubMed  Google Scholar 

  50. Bessiere A, Jacquart S, Priolkar K et al (2011) ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness. Opt Express 19(11):101319–101317. https://doi.org/10.1364/OE.19.010131

    Article  CAS  Google Scholar 

  51. Katayama Y, Kobayashi H, Tanabe S (2015) Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging. Appl Phys Express 8(1). https://doi.org/10.7567/apex.8.012102

  52. Maldiney T, Viana B, Bessière A et al (2013) In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt Mater 35(10):1852–1858. https://doi.org/10.1016/j.optmat.2013.03.028

    Article  CAS  Google Scholar 

  53. Maldiney T, Kaikkonen MU, Seguin J et al (2012) In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles. Bioconjug Chem 23(3):472–478. https://doi.org/10.1021/bc200510z

    Article  CAS  PubMed  Google Scholar 

  54. Rosticher C, Chanéac C, Viana B et al (eds) (2015) Red persistent luminescence and magnetic properties of nanomaterials for multimodal imaging. Proc.SPIE;

  55. Sun M, Li Z-J, Liu C-L et al (2014) Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation. J Lumin 145:838–842. https://doi.org/10.1016/j.jlumin.2013.08.070

    Article  CAS  Google Scholar 

  56. Wang J, Li J, Yu J, Zhang H, Zhang B (2018) Large hollow cavity luminous nanoparticles with near-infrared persistent luminescence and tunable sizes for Tumor afterglow imaging and chemo-/photodynamic therapies. ACS Nano 12(5):4246–4258. https://doi.org/10.1021/acsnano.7b07606

    Article  CAS  PubMed  Google Scholar 

  57. Liu F, Yan W, Chuang YJ et al (2013) Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci Rep 3:1554. https://doi.org/10.1038/srep01554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kamimura S, Xu C-N, Yamada H, Terasaki N, Fujihala M (2014) Long-persistent luminescence in the near-infrared from Nd3+-doped Sr2SnO4 for in vivo optical imaging. Jpn J Appl Phys 53(9). https://doi.org/10.7567/jjap.53.092403

  59. Liang L, Chen J, Shao K et al (2023) Controlling persistent luminescence in nanocrystalline phosphors. Nat Mater 22(3):289–304. https://doi.org/10.1038/s41563-022-01468-y

    Article  CAS  PubMed  Google Scholar 

  60. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1(1). https://doi.org/10.1038/s41551-016-0010

  61. Soga K, Tokuzen K, Tsuji K et al (2010) NIR bioimaging: development of liposome-encapsulated, rare‐earth‐doped Y2O3 nanoparticles as fluorescent probes. Eur J Inorg Chem 2010(18):2673–2677. https://doi.org/10.1002/ejic.201000201

    Article  CAS  Google Scholar 

  62. Zhang Y, Chen D, Wang W et al (2020) Long-lasting ultraviolet-A persistent luminescence and photostimulated persistent luminescence in Bi3+-doped LiScGeO4 phosphor. Inorg Chem Front 7(17):3063–3071. https://doi.org/10.1039/d0qi00578a

    Article  CAS  Google Scholar 

  63. Zou Z, Tang X, Wu C et al (2018) How to tune trap properties of persistent phosphor: photostimulated persistent luminescence of NaLuGeO4:Bi3+,Cr3+ tailored by trap engineering. Mater Res Bull 97:251–259. https://doi.org/10.1016/j.materresbull.2017.09.011

    Article  CAS  Google Scholar 

  64. Wang Z, Wang W, Zhou H et al (2016) Superlong and color-tunable red persistent luminescence and photostimulated luminescence properties of NaCa2GeO4F:Mn2+,Yb3+ phosphor. Inorg Chem 55(24):12822–12831. https://doi.org/10.1021/acs.inorgchem.6b02136

    Article  CAS  PubMed  Google Scholar 

  65. Shi J, Sun X, Zhu J, Li J, Zhang H (2016) One-step synthesis of amino-functionalized ultrasmall near infrared-emitting persistent luminescent nanoparticles for in vitro and in vivo bioimaging. Nanoscale 8(18):9798–9804. https://doi.org/10.1039/c6nr00590j

    Article  CAS  PubMed  Google Scholar 

  66. Lemański K, Babij M, Dereń PJ (2019) Upconversion emission of the GaN nanocrystals doped with rare earth ions. Solid State Sci 94:127–132. https://doi.org/10.1016/j.solidstatesciences.2019.06.005

    Article  CAS  Google Scholar 

  67. Ding Z, He Y, Rao H et al (2022) Novel fluorescent probe based on rare-earth doped upconversion nanomaterials and its applications in early cancer detection. Nanomaterials (Basel) 12(11). https://doi.org/10.3390/nano12111787

  68. Hong E, Liu L, Bai L et al (2019) Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. Mater Sci Eng C Mater Biol Appl 105:110097. https://doi.org/10.1016/j.msec.2019.110097

    Article  CAS  PubMed  Google Scholar 

  69. Zheng X, Kankala RK, Liu C-G et al (2021) Lanthanides-doped near-infrared active upconversion nanocrystals: Upconversion mechanisms and synthesis. Coordin Chem Rev 438. https://doi.org/10.1016/j.ccr.2021.213870

  70. Wang Y, Zheng K, Song S et al (2018) Remote manipulation of upconversion luminescence. Chem Soc Rev 47(17):6473–6485. https://doi.org/10.1039/c8cs00124c

    Article  CAS  PubMed  Google Scholar 

  71. Liu F, Liang Y, Pan Z (2014) Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8:Cr3+,Yb3+,Er3+ phosphor. Phys Rev Lett 113(17):177401. https://doi.org/10.1103/PhysRevLett.113.177401

    Article  CAS  PubMed  Google Scholar 

  72. Haase M, Schafer H (2011) Upconverting nanoparticles. Angew Chem Int Ed Engl 50(26):5808–5829. https://doi.org/10.1002/anie.201005159

    Article  CAS  PubMed  Google Scholar 

  73. Cheng Y, Sun K, Ge P (2018) Yb3+ and Er3+ co-doped ZnGa2O4:Cr3+ powder phosphors: combining green up-conversion emission and red persistent luminescence. Opt Mater 83:13–18. https://doi.org/10.1016/j.optmat.2018.05.048

    Article  CAS  Google Scholar 

  74. Qin J, **ang J, Suo H et al (2019) NIR persistent luminescence phosphor Zn1.3Ga1.4Sn0.3O4:Yb3+,Er3+,Cr3+ with 980 nm laser excitation. J Mater Chem C 7(38):11903–11910. https://doi.org/10.1039/c9tc03882e

    Article  CAS  Google Scholar 

  75. Ge P, Sun K, Li H et al (2020) Near-infrared up-converted persistent luminescence in Zn3Ga2SnO8:Cr3+,Yb3+,Er3+ nano phosphor for imaging. Optik 218. https://doi.org/10.1016/j.ijleo.2020.164944

  76. Ge P, Sun K, Cheng Y (2019) Design and synthesis of up-converted persistent luminescence Zn3Ga2SnO8:Cr3+,Yb3+,Er3+ phosphor. Optik 188:200–204. https://doi.org/10.1016/j.ijleo.2019.05.011

    Article  CAS  Google Scholar 

  77. Cheng Y, Sun K (2020) Up-conversion persistent luminescence of a 980 nm laser activated Zn3Ga2(GexSn1–x)O8:Yb,Er,Cr phosphors. J Fluoresc 30(5):1251–1259. https://doi.org/10.1007/s10895-020-02593-0

    Article  CAS  PubMed  Google Scholar 

  78. Yang J, Jiang R, Meng Y et al (2021) NIR-I/III afterglow induced by energy transfers between Er and Cr Codoped in ZGGO nanoparticles for potential bioimaging. J Am Ceram Soc 104(9):4637–4648. https://doi.org/10.1111/jace.17880

    Article  CAS  Google Scholar 

  79. Xue Z, Li X, Li Y et al (2017) A 980 nm laser-activated upconverted persistent probe for NIR-to-NIR rechargeable in vivo bioimaging. Nanoscale 9(21):7276–7283. https://doi.org/10.1039/c6nr09716b

    Article  CAS  PubMed  Google Scholar 

  80. Li Z, Huang L, Zhang Y et al (2017) Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Res 10(5):1840–1846. https://doi.org/10.1007/s12274-017-1548-9

    Article  CAS  Google Scholar 

  81. Jia D (2006) Enhancement of long-persistence by Ce co-do** in CaS:Eu2+,Tm3+ red phosphor. J Electrochem Soc 153(11). https://doi.org/10.1149/1.2337087

  82. Wu X, Zhang Y, Takle K et al (2016) Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10(1):1060–1066. https://doi.org/10.1021/acsnano.5b06383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hu L, Fan Y, Liu L et al (2017) Orthogonal multiplexed luminescence encoding with near-infrared rechargeable upconverting persistent luminescence composites. Adv Opt Mater 5(22). https://doi.org/10.1002/adom.201700680

  84. Qiu X, Zhu X, Xu M et al (2017) Hybrid nanoclusters for near-infrared to near-infrared upconverted persistent luminescence bioimaging. ACS Appl Mater Interfaces 9(38):32583–32590. https://doi.org/10.1021/acsami.7b10618

    Article  CAS  PubMed  Google Scholar 

  85. Giordano L, Cai G, Seguin J et al (2023) Persistent luminescence induced by upconversion: an alternative approach for rechargeable bio-emitters. Adv Opt Mater 11(11). https://doi.org/10.1002/adom.202201468

  86. Giordano L, Cai G, Seguin J et al (2023) Upconverted persistent luminescence in β-NaGd0.8Yb0.17Er0.03F4 and Zn1.33Ga1.335Sn0.33Cr0.005O4 associated nanoparticles. SPIE OPTO. SPIE. https://doi.org/10.1117/12.2651117

  87. Chen X, Li Y, Huang K et al (2021) Trap energy upconversion-like near-infrared to near-infrared light rejuvenateable persistent luminescence. Adv Mater 33(15):e2008722. https://doi.org/10.1002/adma.202008722

    Article  CAS  PubMed  Google Scholar 

  88. ** for upconversion-like trap energy transfer NIR persistent luminescence. Inorg Chem Front 10(7):2174–2188. https://doi.org/10.1039/d3qi00184a

    Article  CAS  Google Scholar 

  89. Li T, Li Y, Yuan P, Ge D, Yang Y (2019) Efficient X-ray excited short-wavelength infrared phosphor. Opt Express 27(9):13240–13251. https://doi.org/10.1364/OE.27.013240

    Article  CAS  PubMed  Google Scholar 

  90. Westphal ER, Brown AD, Quintana EC et al (2021) Visible emission spectra of thermographic phosphors under x-ray excitation. Meas Sci Technol 32(9). https://doi.org/10.1088/1361-6501/abf222

  91. Li S, Liu Y, Liu C et al (2017) Design, fabrication and characterization of nanocaged 12CaO·7Al2O3:Tb3+ photostimulable phosphor for high-quality X-ray imaging. Mater Des 134:1–9. https://doi.org/10.1016/j.matdes.2017.08.027

    Article  CAS  Google Scholar 

  92. Waetzig GR, Horrocks GA, Jude JW et al (2018) Ligand-mediated control of dopant oxidation state and X-ray excited optical luminescence in Eu-doped LaOCl. Inorg Chem 57(10):5842–5849. https://doi.org/10.1021/acs.inorgchem.8b00234

    Article  CAS  PubMed  Google Scholar 

  93. Kuang Y, Pratx G, Sun C, Carpenter C, **ng L (2011) TU-A-301-08: X-ray stimulated fluorescence for breast imaging. Med Phys 38(6Part28):3746. https://doi.org/10.1118/1.3613098

    Article  Google Scholar 

  94. Naczynski DJ, Sun C, Turkcan S et al (2015) X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Lett 15(1):96–102. https://doi.org/10.1021/nl504123r

    Article  CAS  PubMed  Google Scholar 

  95. **ong P, Peng M (2019) (INVITED) Recent advances in ultraviolet persistent phosphors. Optical Materials: X 2:100022. https://doi.org/10.1016/j.omx.2019.100022

  96. Richard C, Viana B (2022) Persistent x-ray-activated phosphors: mechanisms and applications. Light Sci Appl 11(1):123. https://doi.org/10.1038/s41377-022-00808-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ma L, Zou X, Bui B et al (2014) X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation. Appl Phys Lett 105(1). https://doi.org/10.1063/1.4890105

  98. Xue Z, Li X, Li Y et al (2017) X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging. ACS Appl Mater Interfaces 9(27):22132–22142. https://doi.org/10.1021/acsami.7b03802

    Article  CAS  PubMed  Google Scholar 

  99. Rosticher C, Viana B, Laurent G, Le Griel P, Chanéac C (2015) Insight into CaMgSi2O6:Eu2+,Mn2+,Dy3+ nanoprobes: influence of chemical composition and crystallinity on persistent red luminescence. Eur J Inorg Chem 2015(22):3681–3687. https://doi.org/10.1002/ejic.201500257

    Article  CAS  Google Scholar 

  100. Kong J, Zheng W, Liu Y et al (2015) Persistent luminescence from Eu3+ in SnO2 nanoparticles. Nanoscale 7(25):11048–11054. https://doi.org/10.1039/c5nr01961c

    Article  CAS  PubMed  Google Scholar 

  101. Zhuang Y, Ueda J, Tanabe S (2013) Tunable trap depth in Zn(Ga1 – xAlx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence. J Mater Chem C 1(47). https://doi.org/10.1039/c3tc31462f

  102. Lin XH, Song L, Chen S et al (2017) Kiwifruit-like persistent luminescent nanoparticles with high-performance and in situ activable near-infrared persistent luminescence for long-term in vivo bioimaging. ACS Appl Mater Interfaces 9(47):41181–41187. https://doi.org/10.1021/acsami.7b13920

    Article  CAS  PubMed  Google Scholar 

  103. Chen H, Sun X, Wang GD et al (2017) LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. Mater Horiz 4(6):1092–1101. https://doi.org/10.1039/C7MH00442G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yakunin S, Sytnyk M, Kriegner D et al (2015) Detection of X-ray photons by solution-processed organic-inorganic perovskites. Nat Photonics 9(7):444–449. https://doi.org/10.1038/nphoton.2015.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu B-M, Zou R, Lou S-Q et al (2021) Low-dose x-ray-stimulated LaGaO3:Sb,Cr near-infrared persistent luminescence nanoparticles for deep-tissue and renewable in vivo bioimaging. Chem Eng J 404. https://doi.org/10.1016/j.cej.2020.127133

  106. Zheng H, Liu L, Li Y et al (2023) X-ray excited Mn2+-doped persistent luminescence materials with biological window emission for in vivo bioimaging. J Rare Earth. https://doi.org/10.1016/j.jre.2023.01.004

    Article  Google Scholar 

  107. Peng M, Yin X, Tanner PA, Brik MG, Li P (2015) Site occupancy preference, enhancement mechanism, and thermal resistance of Mn4+ red luminescence in Sr4Al14O25: Mn4+ for warm WLEDs. Chem Mater 27(8):2938–2945. https://doi.org/10.1021/acs.chemmater.5b00226

    Article  CAS  Google Scholar 

  108. Zhou Z, Zhou N, **a M, Yokoyama M, Hintzen HT (2016) Research progress and application prospects of transition metal Mn4+-activated luminescent materials. J Mater Chem C 4(39):9143–9161. https://doi.org/10.1039/c6tc02496c

    Article  CAS  Google Scholar 

  109. Du J, Poelman D (2019) Near-infrared persistent luminescence in Mn4+ doped perovskite type solid solutions. Ceram Int 45(7):8345–8353. https://doi.org/10.1016/j.ceramint.2019.01.142

    Article  CAS  Google Scholar 

  110. Ding S, Guo H, Feng P, Ye Q, Wang Y (2020) A new near-infrared long persistent luminescence material with its outstanding persistent luminescence performance and promising multifunctional application prospects. Adv Opt Mater 8(18). https://doi.org/10.1002/adom.202000097

  111. Du J, Li K, Van Deun R, Poelman D, Lin H (2021) Near-infrared persistent luminescence and trap reshuffling in Mn4+ doped alkali‐earth metal tungstates. Adv Opt Mater 10(2). https://doi.org/10.1002/adom.202101714

  112. Wei Y, Gong C, Zhao M et al (2022) Recent progress in synthesis of lanthanide-based persistent luminescence nanoparticles. J Rare Earth 40(9):1333–1342. https://doi.org/10.1016/j.jre.2022.05.016

    Article  CAS  Google Scholar 

  113. Song L, Lin XH, Song XR et al (2017) Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale 9(8):2718–2722. https://doi.org/10.1039/c6nr09553d

    Article  CAS  PubMed  Google Scholar 

  114. Li Y, Gecevicius M, Qiu J (2016) Long persistent phosphors–from fundamentals to applications. Chem Soc Rev 45(8):2090–2136. https://doi.org/10.1039/c5cs00582e

    Article  CAS  PubMed  Google Scholar 

  115. Hu Y, Li X, Wang X et al (2020) Greatly enhanced persistent luminescence of YPO4:Sm3+ phosphors via Tb3+ incorporation for in vivo imaging. Opt Express 28(2):2649–2660. https://doi.org/10.1364/OE.384678

    Article  CAS  PubMed  Google Scholar 

  116. Ou X, Qin X, Huang B et al (2021) High-resolution X-ray luminescence extension imaging. Nature 590(7846):410–415. https://doi.org/10.1038/s41586-021-03251-6

    Article  CAS  PubMed  Google Scholar 

  117. Jiang S, Lin J, Huang P (2022) Nanomaterials for NIR-II Photoacoustic Imaging. Adv Healthc Mater e2202208. https://doi.org/10.1002/adhm.202202208

  118. Pei P, Chen Y, Sun C et al (2021) X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat Nanotechnol 16(9):1011–1018. https://doi.org/10.1038/s41565-021-00922-3

    Article  CAS  PubMed  Google Scholar 

  119. Liang YJ, Liu F, Chen YF et al (2016) New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared. Light Sci Appl 5(7):e16124. https://doi.org/10.1038/lsa.2016.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ding D, Li S, Xu H et al (2021) X-ray-activated simultaneous near-infrared and short-wave infrared persistent luminescence imaging for long-term tracking of drug delivery. ACS Appl Mater Interfaces 13(14):16166–16172. https://doi.org/10.1021/acsami.1c02372

    Article  CAS  PubMed  Google Scholar 

  121. Zheng S, Shi J, Fu X et al (2020) X-ray recharged long afterglow luminescent nanoparticles MgGeO3:Mn2+,Yb3+,Li+ in the first and second biological windows for long-term bioimaging. Nanoscale 12(26):14037–14046. https://doi.org/10.1039/c9nr10622g

    Article  CAS  PubMed  Google Scholar 

  122. Sengar P, Juarez P, Verdugo-Meza A et al (2018) Development of a functionalized UV-emitting nanocomposite for the treatment of cancer using indirect photodynamic therapy. J Nanobiotechnol 16(1):19. https://doi.org/10.1186/s12951-018-0344-3

    Article  CAS  Google Scholar 

  123. Cai H, Song Z, Liu Q (2021) Infrared-photostimulable and long-persistent ultraviolet-emitting phosphor LiLuGeO4:Bi3+,Yb3+ for biophotonic applications. Mater Chem Front 5(3):1468–1476. https://doi.org/10.1039/d0qm00932f

    Article  CAS  Google Scholar 

  124. Liu L, Yu K, Ming L et al (2022) A novel Gd-based phosphor NaGdGeO4:Bi3+,Li+ with super-long ultraviolet-A persistent luminescence. J Rare Earth 40(9):1424–1431. https://doi.org/10.1016/j.jre.2021.04.017

    Article  CAS  Google Scholar 

  125. Yin X, Zhong H, Liu L et al (2023) X-ray-activated Bi3+/Pr3+ co-doped LiYGeO4 phosphor with UV and NIR dual-emissive persistent luminescence. J Rare Earth. https://doi.org/10.1016/j.jre.2023.03.008

    Article  Google Scholar 

  126. Yu N, Li Y, Li Z, Han G (2018) The bottom-up synthesis and applications of persistent luminescence nanoparticles. Sci China Chem 61(7):757–758. https://doi.org/10.1007/s11426-018-9263-9

    Article  CAS  Google Scholar 

  127. Zhou Q, Xu M, Feng W, Li F (2021) Quantum Yield measurements of Photochemical reaction-based afterglow luminescence materials. J Phys Chem Lett 12(39):9455–9462. https://doi.org/10.1021/acs.jpclett.1c02715

    Article  CAS  PubMed  Google Scholar 

  128. Poon W, Zhang YN, Ouyang B et al (2019) Elimination pathways of nanoparticles. ACS Nano 13(5):5785–5798. https://doi.org/10.1021/acsnano.9b01383

    Article  CAS  PubMed  Google Scholar 

  129. Lecuyer T, Durand MA, Volatron J et al (2020) Degradation of ZnGa2O4:Cr3+ luminescent nanoparticles in lysosomal-like medium. Nanoscale 12(3):1967–1974. https://doi.org/10.1039/c9nr06867h

    Article  CAS  PubMed  Google Scholar 

  130. Teston E, Richard S, Maldiney T et al (2015) Non-aqueous sol-gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging. Chemistry 21(20):7350–7354. https://doi.org/10.1002/chem.201406599

    Article  CAS  PubMed  Google Scholar 

  131. Lecuyer T, Seguin J, Balfourier A et al (2022) Fate and biological impact of persistent luminescence nanoparticles after injection in mice: a one-year follow-up. Nanoscale 14(42):15760–15771. https://doi.org/10.1039/d2nr03546d

    Article  CAS  PubMed  Google Scholar 

  132. Ramirez-Garcia G, Gutierrez-Granados S, Gallegos-Corona MA et al (2017) Long-term toxicological effects of persistent luminescence nanoparticles after intravenous injection in mice. Int J Pharm 532(2):686–695. https://doi.org/10.1016/j.ijpharm.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  133. Jiang Y, Li Y, Richard C, Scherman D, Liu Y (2019) Hemocompatibility investigation and improvement of near-infrared persistent luminescent nanoparticle ZnGa2O4:Cr3+ by surface PEGylation. J Mater Chem B 7(24):3796–3803. https://doi.org/10.1039/c9tb00378a

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by the China Postdoctoral ScienceFoundation (No.2022M711438), Natural Science Foundation of Shan-dong Province (ZR2020ME045 and ZR2020MEO46), “New Universities20” Foundation of **an (Grant No.2021GXRCO99, T202204), Science andTechnology Program of University of **an (No.XKY2016).

Author information

Authors and Affiliations

Authors

Contributions

YQ.L. wrote the main manuscript text and prepared Figs. 1, 2, 3, 4, 5 and 6 with Table 1, and 2. JK.L. proposed the general structure of the article and provided writing guidance. JQ.XH. reviewed the manuscript. ZM.L. supervised the entire process.

Corresponding authors

Correspondence to **kai Li, Junqing **ahou or Zongming Liu.

Ethics declarations

Ethical Approval

Not available.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, J., **ahou, J. et al. Recent Advances in NIR or X-ray Excited Persistent Luminescent Materials for Deep Bioimaging. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03513-8

Keywords

Navigation