Log in

Fluorescent Switch-on Detection of Cadmium(II) Using Salicylaldehyde-Decorated Gold Nanoclusters

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, salicylaldehyde (SA) conjugated gold nanoclusters were synthesized, characterized, and applied for the fluorescent turn-on sensing of Cd2+. The trypsin-stabilized fluorescent gold nanocluster (Tryp-AuNCs, λem = 680 nm) was modified with SA to form the spherical-shaped SA_Tryp-AuNCs. After modification, the red-emitting Tryp-AuNCs turned to green-emitting SA_Tryp-AuNCs because of the formation of imine linkage between the -CHO group of SA with the -NH2 group of functionalized trypsin. The modified SA_Tryp-AuNCs selectively interacted with Cd2+ and exhibited a fluorescence enhancement at 660 nm. The Cd2+ detection with SA_Tryp-AuNCs is simple and rapid with an estimated nanomolar detection limit of 98.1 nM. The practical utility of SA_Tryp-AuNCs was validated by quantifying Cd2+ in real environmental water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated during this study are included in this published article.

References

  1. Anyakora C, Ehianeta T, Umukoro O (2013) Heavy metal levels in soil samples from highly industrialized Lagos environment. Afr J Environ Sci Technol 7:917–924

    Google Scholar 

  2. Chen SY, Li Z, Li K, Yu XQ (2021) Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord Chem Rev 429:213691

    Article  CAS  Google Scholar 

  3. Chmielowska-Bąk J, Gzyl J, Rucińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:245

    PubMed  PubMed Central  Google Scholar 

  4. Zhu YF, Wang YS, Zhou B, Yu JH, Peng LL, Huang YQ, Li XJ, Chen SH, Tang X, Wang XF (2017) A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium (II), Analytical and bioanalytical chemistry. 409:4951–4958

  5. Khairy M, El-Safty SA, Shenashen M (2014) Environmental remediation and monitoring of cadmium. TRAC Trends Anal Chem 62:56–68

    Article  CAS  Google Scholar 

  6. Koju NK, Song X, Wang Q, Hu Z, Colombo C (2018) Cadmium removal from simulated groundwater using alumina nanoparticles: behaviors and mechanisms. Environ Pollut 240:255–266

    Article  CAS  PubMed  Google Scholar 

  7. Tao Z, Wei L, Wu S, Duan N, Li X, Wang Z (2020) A colorimetric aptamer-based method for detection of cadmium using the enhanced peroxidase-like activity of Au–MoS2 nanocomposites. Anal Biochem 608:113844

    Article  CAS  PubMed  Google Scholar 

  8. Yi Y, Zhao Y, Zhang Z, Wu Y, Zhu G (2022) Recent developments in electrochemical detection of cadmium. Trends in Environmental Analytical Chemistry 33:e00152

    Article  CAS  Google Scholar 

  9. Yu Y, Zhou X, Zhu Z, Zhou K (2018) Sodium hydrosulfide mitigates cadmium toxicity by promoting cadmium retention and inhibiting its translocation from roots to shoots in Brassica napus. J Agric Food Chem 67:433–440

    Article  PubMed  Google Scholar 

  10. Anthemidis AN, Zachariadis GA, Farastelis CG, Stratis JA (2004) On-line liquid–liquid extraction system using a new phase separator for flame atomic absorption spectrometric determination of ultra-trace cadmium in natural waters. Talanta 62:437–443

    Article  CAS  PubMed  Google Scholar 

  11. Zhao T, Yao Y, Wang M, Chen R, Yu Y, Wu F, Zhang C (2017) Preparation of MnO2-modified graphite sorbents from spent Li-ion batteries for the treatment of water contaminated by lead, cadmium, and silver. ACS Appl Mater Interfaces 9:25369–25376

    Article  CAS  PubMed  Google Scholar 

  12. Baghayeri M, Amiri A, Maleki B, Alizadeh Z, Reiser O (2018) A simple approach for simultaneous detection of cadmium(II) and lead(II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe. Sens Actuators B 273:1442–1450

    Article  CAS  Google Scholar 

  13. Mitra S, Purkait T, Pramanik K, Maiti TK, Dey RS (2019) Three-dimensional graphene for electrochemical detection of Cadmium in Klebsiella michiganensis to study the influence of Cadmium uptake in rice plant. Mater Sci Eng C Mater Biol Appl 103:109802

    Article  CAS  PubMed  Google Scholar 

  14. Attaallah R, Amine A (2022) Highly selective and sensitive detection of cadmium ions by horseradish peroxidase enzyme inhibition using a colorimetric microplate reader and smartphone paper-based analytical device. Microchem J 172:106940

    Article  CAS  Google Scholar 

  15. Jabariyan S, Zanjanchi MA (2019) Colorimetric detection of cadmium ions using modified silver nanoparticles. Appl Phys A 125:1–10

    Article  Google Scholar 

  16. Aoshima K (2016) Itai-Itai Disease: renal tubular osteomalacia induced by environmental exposure to cadmium—historical review and perspectives. Soil Sci Plant Nutr 62:319–326

    Article  CAS  Google Scholar 

  17. Baba H, Tsuneyama K, Yazaki M, Nagata K, Minamisaka T, Tsuda T, Nomoto K, Hayashi S, Miwa S, Nakajima T (2013) The liver in itai-itai Disease (chronic cadmium Poisoning): pathological features and metallothionein expression. Mod Pathol 26:1228–1234

    Article  CAS  PubMed  Google Scholar 

  18. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic, Front Pharmacol, 227

  19. Inaba T, Kobayashi E, Suwazono Y, Uetani M, Oishi M, Nakagawa H, Nogawa K (2005) Estimation of cumulative cadmium intake causing Itai–Itai Disease. Toxicol Lett 159:192–201

    Article  CAS  PubMed  Google Scholar 

  20. Flick D, Kraybill H, Dlmitroff J (1971) Toxic effects of cadmium: a review. Environ Res 4:71–85

    Article  CAS  PubMed  Google Scholar 

  21. Awual MR, Khraisheh M, Alharthi NH, Luqman M, Islam A, Karim MR, Rahman MM, Khaleque MA (2018) Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials. Chem Eng J 343:118–127

    Article  CAS  Google Scholar 

  22. Xue Y, Wang Y, Wang S, Yan M, Huang J, Yang X (2020) Label-free and regenerable aptasensor for real-time detection of cadmium (II) by dual polarization interferometry. Anal Chem 92:10007–10015

    Article  CAS  PubMed  Google Scholar 

  23. Maleki B, Baghayeri M, Ghanei-Motlagh M, Zonoz FM, Amiri A, Hajizadeh F, Hosseinifar A, Esmaeilnezhad E (2019) Polyamidoamine dendrimer functionalized iron oxide nanoparticles for simultaneous electrochemical detection of Pb2 + and Cd2 + ions in environmental waters. Measurement 140:81–88

    Article  Google Scholar 

  24. **a SA, Leng A, Lin Y, Wu L, Tian Y, Hou X, Zheng C (2019) Integration of flow injection capillary liquid electrode discharge optical emission spectrometry and microplasma-induced vapor generation: a system for detection of ultratrace hg and cd in a single drop of human whole blood. Anal Chem 91:2701–2709

    Article  CAS  PubMed  Google Scholar 

  25. Ghanei-Motlagh M, Taher MA (2017) Novel imprinted polymeric nanoparticles prepared by sol–gel technique for electrochemical detection of toxic cadmium (II) ions. Chem Eng J 327:135–141

    Article  CAS  Google Scholar 

  26. Zhu H, Tan X, Tan L, Zhang H, Liu H, Fang M, Hayat T, Wang X (2018) Engineering, magnetic porous polymers prepared via high internal phase emulsions for efficient removal of Pb2 + and Cd2+. ACS Sustainable Chem Eng 6:5206–5213

    Article  CAS  Google Scholar 

  27. Anthemidis AN, Karapatouchas CPP (2008) Flow injection on-line hydrophobic sorbent extraction for flame atomic absorption spectrometric determination of cadmium in water samples. Microchim Acta 160:455–460

    Article  CAS  Google Scholar 

  28. Awual MR (2017) New type mesoporous conjugate material for selective optical copper (II) ions monitoring & removal from polluted waters. Chem Eng J 307:85–94

    Article  CAS  Google Scholar 

  29. Awual MR, Hasan MM, Shahat A (2014) Functionalized novel mesoporous adsorbent for selective lead (II) ions monitoring and removal from wastewater. Sens Actuators B 203:854–863

    Article  CAS  Google Scholar 

  30. Awual MR, Ismael M, Yaita T (2014) Efficient detection and extraction of cobalt (II) from lithium ion batteries and wastewater by novel composite adsorbent. Sens Actuators B 191:9–18

    Article  CAS  Google Scholar 

  31. Peng X, Du J, Fan J, Wang J, Wu Y, Zhao J, Sun S, Xu T (2007) A selective fluorescent sensor for imaging Cd2 + in living cells. J Am Chem Soc 129:1500–1501

    Article  CAS  PubMed  Google Scholar 

  32. Dolan SP, Nortrup DA, Bolger PM, Capar SG (2003) Analysis of dietary supplements for arsenic, cadmium, mercury, and lead using inductively coupled plasma mass spectrometry. J Agric Food Chem 51:1307–1312

    Article  CAS  PubMed  Google Scholar 

  33. Gholivand MB, Pourhossein A, Shahlaei M (2011) Simultaneous determination of copper and cadmium in environmental water and tea samples by adsorptive strip** voltammetry. Turk J Chem 35:839–846

    CAS  Google Scholar 

  34. Pyle SM, Nocerino JM, Deming SN, Palasota JA, Palasota JM, Miller EL, Hillman DC, Kuharic CA, Cole WH, Fitzpatrick PM (1995) Comparison of AAS, ICP-AES, PSA, and XRF in determining lead and cadmium in soil, vol 30. Environmental science & technology, pp 204–213

  35. Satti AA, Temuge İD, Bektaş S, Şahin ÇA (2016) An application of coacervate-based extraction for the separation and preconcentration of cadmium, lead, and nickel ions prior to their determination by flame atomic absorption spectrometry in various water samples. Turk J Chem 40:979–987

    Article  CAS  Google Scholar 

  36. Zhou J, Li B, Qi A, Shi Y, Qi J, Xu H, Chen L (2020) ZnSe quantum dot based ion imprinting technology for fluorescence detecting cadmium and lead ions on a three-dimensional rotary paper-based microfluidic chip. Sens Actuators B 305:127462

    Article  CAS  Google Scholar 

  37. Hyotanishi M, Isomura Y, Yamamoto H, Kawasaki H, Obora Y (2011) Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions. Chem Commun 47:5750–5752

    Article  CAS  Google Scholar 

  38. Bhardwaj V, Anand T, Choi HJ, Sahoo SK (2019) Sensing of Zn (II) and nitroaromatics using salicyclaldehyde conjugated lysozyme-stabilized fluorescent gold nanoclusters. Microchem J 151:104227

    Article  CAS  Google Scholar 

  39. **e J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889

    Article  CAS  PubMed  Google Scholar 

  40. Chang HC, Chang YF, Fan NC, Ho JA (2014) Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols. ACS Appl Mater Interfaces 6:18824–18831

    Article  CAS  PubMed  Google Scholar 

  41. Pramanik G, Humpolickova J, Valenta J, Kundu P, Bals S, Bour P, Dracinsky M, Cigler PJN (2018) Gold nanoclusters with bright near-infrared photoluminescence. Nanoscale 10:3792–3798

    Article  CAS  PubMed  Google Scholar 

  42. Wu Z, ** R (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10:2568–2573

    Article  CAS  PubMed  Google Scholar 

  43. Liu JM, Chen JT, Yan XP (2013) Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal Chem 85:3238–3245

    Article  CAS  PubMed  Google Scholar 

  44. Fan J, Li R, Xu P, Di J, Tu Y, Yan J (2014) Sensitive sulfide sensor with a trypsin-stabilized gold nanocluster. Anal Sci 30:457–462

    Article  CAS  PubMed  Google Scholar 

  45. Walmsley SJ, Rudnick PA, Liang Y, Dong Q, Stein SE, Nesvizhskii AI (2013) Comprehensive analysis of protein digestion using six trypsins reveals the origin of trypsin as a significant source of variability in proteomics. J Proteome Res 12:5666–5680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. The Investigation, Validation, Formal analysis, Data curation, Writing-original draft were performed by Aditi Tripathi. Vinita Bhardwaj helps in Formal analysis and Writing-original draft. The Conceptualization, Resources, Supervision, and Writing-review & editing were performed by Suban K Sahoo.

Corresponding author

Correspondence to Suban K Sahoo.

Ethics declarations

Ethics Approval

Not applicable as the study does not include any use of animals and humans.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflicts of Interest/Competing Interests

Authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, A., Bhardwaj, V. & Sahoo, S.K. Fluorescent Switch-on Detection of Cadmium(II) Using Salicylaldehyde-Decorated Gold Nanoclusters. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03497-5

Keywords

Navigation