Log in

Highly Blue-fluorescent Carbon Quantum Dots Obtained from Medlar Seed for Hg2+ Determination in Real Water Samples

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The carbon quantum dots (CQDs) have been prepared from medlar seeds with pyrolysis method in an oven at 300 °C. UV-vis absorption spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR) spectroscopy, x-ray diffraction (XRD) technique, x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were used in the characterization of CQDs. CQDs, give a strong blue fluorescence under UV lamp (at 365 nm), have a quantum yield of 12.2%. The influence of metal ions such as K+, Mg2+, Ca2+, Be2+, Cr3+, Mn2+, Ni2+, Ag+, Hg2+, and Al3+ on the fluorescence properties of the CQDs was investigated by means of emission spectrophotometry. CQDs altering fluorescence characteristics depending on the excitation wavelength show selectivity for Hg2+ ions with outstanding fluorescence quenching among the tested metal ions. Based on these results, a new fluorimetric method has been developed for the determination of Hg2+ in real water samples. The linear range of method is 1.0 to 5.0 mgL− 1. Limit of detection and limit of quantification are 0.26 and 0.79 mgL− 1, respectively. The proposed method has been successfully used in determination of Hg2+ ions in tap, sea, and stream water samples with application of addition-recovery experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Datasets and materials used can be reached from Nurhayat Özbek.

References

  1. Bui MPN, Brockgreitens J, Ahmed S, Abbas A (2016) Dual detection of nitrate and mercury in water using disposable electrochemical sensors. Biosens Bioelectron 85:280–286. https://doi.org/10.1016/j.bios.2016.05.017

    Article  CAS  PubMed  Google Scholar 

  2. Schrope M (2001) US to take temperature of mercury threat. Nature 409:124. https://doi.org/10.1038/35051770

    Article  CAS  PubMed  Google Scholar 

  3. Makam P, Shilpa R, Kandjani AE, Periasamy SR, Sabri YM, Madhu C, Bhargava SK, Govindaraju T (2018) SERS and fluorescence-based ultrasensitive detection of mercury in water. Biosens Bioelectron 100:556–564. https://doi.org/10.1016/j.bios.2017.09.051

    Article  CAS  PubMed  Google Scholar 

  4. Kallithrakas-Kontos N, Foteinis S (2016) Recent advances in the analysis of mercury in water – review. Curr Anal Chem 12:22–36. https://doi.org/10.2174/157341101201151007120324

    Article  CAS  Google Scholar 

  5. EPA (2023) https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Last updated on January 9, 2023

  6. WHO (2022) Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. World Health Organization, Geneva. https://www.who.int/publications/i/item/9789240045064 Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  7. Das R, Bandyopadhyay R, Pramanik P (2018) Carbon quantum dots from natural resource: a review. Mater Today Chem 8:96–109. https://doi.org/10.1016/j.mtchem.2018.03.003

    Article  CAS  Google Scholar 

  8. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542. https://doi.org/10.1007/s00604-015-1705-3

    Article  CAS  Google Scholar 

  9. Speranza G (2021) Carbon nanomaterials: synthesis, functionalization and sensing applications. Nanomaterials 11:967. https://doi.org/10.3390/nano11040967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shah AQ, Kazi TG, Baig JA, Afridi HI, Arain MB (2012) Simultaneously determination of methyl and inorganic mercury in fish species by cold vapour generation atomic absorption spectrometry. Food Chem 134:2345–2349. https://doi.org/10.1016/j.foodchem.2012.03.109

    Article  CAS  PubMed  Google Scholar 

  11. Wen G, Wen X, Choi MMF, Shuang S (2015) Photoelectrochemical sensor for detecting Hg2+ based on exciton trap**. Sens Actuators B Chem 221:1449–1454. https://doi.org/10.1016/j.snb.2015.07.103

    Article  CAS  Google Scholar 

  12. Zhang JR, Huang WT, Zeng AL, Luo HQ, Li NB (2015) Ethynyl and π-stacked thymine–Hg2+–thymine base pairs enhanced fluorescence quenching via photoinduced electron transfer and simple and sensitive mercury ion sensing. Biosens Bioelectron 64:597–604. https://doi.org/10.1016/j.bios.2014.09.092

    Article  CAS  PubMed  Google Scholar 

  13. Jamshidi M, Ghaedi M, Mortazavi K, Biareh MN, Soylak M (2011) Determination of some metal ions by flame-AAS after their preconcentration using sodium dodecyl sulfate coated alumina modified with 2-hydroxy-(3-((1-H-indol 3-yle) phenyl) methyl) 1-H-indol (2-HIYPMI). Food Chem Toxicol 49:1229–1234. https://doi.org/10.1016/j.fct.2011.02.025

    Article  CAS  PubMed  Google Scholar 

  14. Wang BS, Lee CP, Ho TY (2014) Trace metal determination in natural waters by automated solid phase extraction system and ICP-MS: the influence of low level mg and ca. Talanta 128:337–344. https://doi.org/10.1016/j.talanta.2014.04.077

    Article  CAS  PubMed  Google Scholar 

  15. Kappen J, Aravind MK, Varalakshmi P et al (2020) Hydroxyl rich graphene quantum dots for the determination of hg (II) in the presence of large concentration of major interferents and in living cells. Microchem J 157:104915. https://doi.org/10.1016/j.microc.2020.104915

    Article  CAS  Google Scholar 

  16. Fu WJ, Peng ZX, Dai Y, Yang YF, Song JY, Sun W, Ding B, Gu HW, Yin XL (2022) Highly fluorescent N doped C-dots as sensor for selective detection of Hg2+ in beverages. Spectrochim Acta-A:Mol Biomol Spectrosc 265:120392. https://doi.org/10.1016/j.saa.2021.120392

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, ** W, Wang F, Li T, Nie J, **ao W, Zhang Q, Zhang Y (2019) Ratiometric fluorescent sensing of Pb2+ and Hg2+ with two types of carbon dot nanohybrids synthesized from the same biomass. Sens Actuator B Chem 296:126698. https://doi.org/10.1016/j.snb.2019.126698

    Article  CAS  Google Scholar 

  18. Solgi M, Najib T, Ahmadnejad S, Nasernejad B (2017) Synthesis and characterization of novel activated carbon from medlar seed for chromium removal: experimental analysis and modeling with artificial neural network and support vector regression. Resource-Efficient Technol 3:236–248. https://doi.org/10.1016/j.reffit.2017.08.003

    Article  Google Scholar 

  19. Gruz J, Ayaz FA, Torun H, Strnad M (2011) Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L) fruit at different stages of ripening. Food Chem 124(1):271–277. https://doi.org/10.1016/j.foodchem.2010.06.030

    Article  CAS  Google Scholar 

  20. Cevahir G, Bostan SZ (2021) Organic acids, sugars and bioactive compounds of promising medlar (Mespilus Germanica L.) genotypes selected from Turkey. Int J Fruit Sci 21(1):312–322. https://doi.org/10.1080/15538362.2021.1874594

    Article  Google Scholar 

  21. Periyasamy S, Kumar IA, Viswanathan N (2020) Activated Carbon from different Waste materials for the removal of toxic Metals. In: Naushad M, Lichtfouse E (eds) Green materials for Wastewater Treatment. Environmental Chemistry for a sustainable world, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-17724-9

    Chapter  Google Scholar 

  22. Topak F, Akalin MK (2023) Production of bio-oil via catalytic pyrolysis of medlar seeds. BioResources 18(2):3144–3159. https://doi.org/10.15376/biores.18.2.3144-3159

    Article  CAS  Google Scholar 

  23. Taniguchi M, Lindsey JS (2018) Database of absorption and fluorescence spectra of > 300 common compounds for use in photochem CAD. Photochem Photobiol 94:290–327. https://doi.org/10.1111/php.12860

    Article  CAS  PubMed  Google Scholar 

  24. Siddique AB, Pramanick AK, Chatterjee S, Ray M (2018) Amorphous carbon dots and their remarkable ability to detect 2,4,6-trinitrophenol. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-018-28021-9

    Article  CAS  Google Scholar 

  25. Kelarakis A (2014) From highly graphitic to amorphous carbon dots: a critical review. MRS Energy Sustainability. https://doi.org/10.1557/mre.2014.7. 1: E2

    Article  Google Scholar 

  26. Bhaisare ML, Talib A, Khan MS, Pandey S, Wu HF (2015) Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging. Microchim Acta 182:2173–2181. https://doi.org/10.1007/s00604-015-1541-5

    Article  CAS  Google Scholar 

  27. Essner JB, Laber CH, Ravula S, Polo-Parada L, Baker GA (2016) Pee-dots: biocompatible fluorescent carbon dots derived from the upcycling of urine. Green Chem 18(1):243–250. https://doi.org/10.1039/c5gc02032h

    Article  Google Scholar 

  28. Hinrichs R, Zen Vasconcellos MA, Österle W, Prietzel C (2018) Amorphization of graphite flakes in gray cast iron under tribological load. Mat Res 21(4):e20171000. https://doi.org/10.1590/1980-5373-MR-2017-1000

    Article  CAS  Google Scholar 

  29. Gümrükçüoğlu A, Başoğlu A, Kolaylı S, Dinç S, Kara M, Ocak M, Ocak Ü (2020) Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples. Turk J Chem 44:99–111. https://doi.org/10.3906/kim-1903-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang L, Bi Y, Hou J, Li H, Xu Y, Wang B, Ding H, Ding L (2016) Facile, green and clean one-step synthesis of carbon dots from wool: application as a sensor for glyphosate detection based on the inner filter effect. Talanta 160:268–275. https://doi.org/10.1016/j.talanta.2016.07.020

    Article  CAS  PubMed  Google Scholar 

  31. Gao X, Lu Y, Zhang R, He S, Ju J, Liu M, Li L, Chen W (2015) One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. J Mater Chem C 3:2302–2309. https://doi.org/10.1039/C4TC02582B

    Article  CAS  Google Scholar 

  32. Teng X, Ma C, Ge C, Yan M, Yang J, Zhang Y et al (2014) Green synthesis of nitrogen-doped carbon dots from konjac flour with off–on fluorescence by Fe3+ and l-lysine for bioimaging. J Mater Chem B 2:4631. https://doi.org/10.1039/C4TB00368C

    Article  CAS  PubMed  Google Scholar 

  33. Abd Elhaleem SM, Elsebaei F, Shalan S, Belal F (2022) Utilization of N,S-doped carbon dots as a fluorescent nanosensor for determination of cromolyn based on inner filter effect: application to aqueous humour. Luminescence 37:713–721. https://doi.org/10.1002/bio.4212

    Article  CAS  PubMed  Google Scholar 

  34. Shabbir H, Csapó E, Wojnicki M (2023) Carbon quantum dots: the role of surface functional groups and proposed mechanisms for metal ion sensing. Inorganics 11(6):262. https://doi.org/10.3390/inorganics11060262

    Article  CAS  Google Scholar 

  35. Chen RF (1990) Fluorescence of proteins and peptides. In: Guilbault GG (ed) Practical fluorescence, 2nd edn. Dekker, New York, p 595

    Google Scholar 

  36. Cha KW, Park KW (1998) Determination of iron(III) with salicylic acid by the fluorescence quenching method. Talanta 46:1567–1571. https://doi.org/10.1016/S0039-9140(98)00032-0

    Article  CAS  PubMed  Google Scholar 

  37. Li T, Ning Y, Pang J, Chen L, Zhang F, Chai F (2023) Green and facile synthesis of silicon-doped carbon dots and their use in detection of Hg2+ and visualization of latent fingerprints. New J Chem 47:147–155. https://doi.org/10.1039/D2NJ04671G

    Article  CAS  Google Scholar 

  38. Liu H, Li H, Du K, Xu H (2022) Yellow fluorescent carbon dots sensitive detection of Hg2+ and its detection mechanism. Mater Today Commun 33:104880. https://doi.org/10.1016/j.mtcomm.2022.104880

    Article  CAS  Google Scholar 

  39. Samota S, Tewatia P, Rani R, Chakraverty S, Kaushik A (2022) Carbon dot nanosensors for ultra-low level, rapid assay of mercury ions synthesized from an aquatic weed, Typha angustata Bory (Patera). Diam Relat Mater 130:109433. https://doi.org/10.1016/j.diamond.2022.109433

    Article  CAS  Google Scholar 

  40. Pajewska-Szmyt M, Buszewski B, Gadzała-Kopciuch R (2020) Sulphur and nitrogen doped carbon dots synthesis by microwave assisted method as quantitative analytical nano-tool for mercury ion sensing. Mater Chem Phys 242:122484. https://doi.org/10.1016/j.matchemphys.2019.122484

    Article  CAS  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Nurhayat Özbek, Miraç Ocak, and Ümmühan Turgut Ocak wrote the main manuscript text and Ender Çekirge prepared all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ümmühan Turgut Ocak.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

An ethics approval is not legally required for the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özbek, N., Çekirge, E., Ocak, M. et al. Highly Blue-fluorescent Carbon Quantum Dots Obtained from Medlar Seed for Hg2+ Determination in Real Water Samples. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03463-1

Keywords

Navigation