Log in

Bluish-white Light-emitting 2D Sheets of Lead-free Perovskite Cesium Titanium Bromide (CsTiBr3) by a Two-stage Deposition Technique

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Bluish-white light-emitting materials are commonly used in LED lighting because they produce natural-looking light. Here we report the photoluminescent emission (PL) of novel, two-dimensional lead-free CsTiBr3 perovskite prepared via a two-stage deposition process. The formation of two-dimensional nanosheets of CsTiBr3 perovskite is confirmed by XRD, EDAX, and FESEM analysis. The height of the cesium bromide thin film substrate from the titanium bromide vapor source plays an important role in the formation of two-dimensional CsTiBr3. The CsTiBr3 perovskite nanosheets exhibit unique exciton- luminescence at 440 nm and self-trapped exciton emission at 595 nm which are the characteristics of two-dimensional halide structure, along with the band-to-band emission at 400 nm at an excitation wavelength of 340 nm. The resulting bluish-white light PL emission makes two-dimensional CsTiBr3 perovskite an alternative material to the traditional lead-based perovskite in LEDs, display technology, solid-state lighting, and various optoelectronic devices, addressing environmental concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Chauhan V et al (Sep. 2023) Prospects for lead free Perovskite for Photovoltaic Applications and Biological Impacts: Challenges and Opportunities. Inorg Chem Commun 111421. https://doi.org/10.1016/j.inoche.2023.111421

  2. Ikram M et al (Oct. 2022) Recent advancements and future insight of lead-free non-toxic perovskite solar cells for sustainable and clean energy production: a review. Sustain Energy Technol Assess 53:102433. https://doi.org/10.1016/j.seta.2022.102433

  3. Schileo G, Grancini G (2021) Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. J Mater Chem C Mater 9(1):67–76. https://doi.org/10.1039/D0TC04552G

    Article  CAS  Google Scholar 

  4. Fan Q et al (Jan. 2020) Lead-free Halide Perovskite Nanocrystals: Crystal Structures, synthesis, Stabilities, and Optical Properties. Angew Chem Int Ed 59(3):1030–1046. https://doi.org/10.1002/anie.201904862

  5. Luo J, Hu M, Niu G, Tang J (2019) “Lead-Free Halide Perovskites and Perovskite Variants as Phosphors toward Light-Emitting Applications,” ACS Appl Mater Interfaces, vol. 11, no. 35, pp. 31575–31584, Sep. https://doi.org/10.1021/acsami.9b08407

  6. Li X et al (Feb. 2021) Lead-free Halide Perovskites for Light Emission: recent advances and perspectives. Adv Sci 8(4). https://doi.org/10.1002/advs.202003334

  7. Koutselas I, Bampoulis P, Maratou E, Evagelinou T, Pagona G, Papavassiliou GC (May 2011) Some unconventional Organic – Inorganic Hybrid Low-Dimensional Semiconductors and Related Light-Emitting Devices. J Phys Chem C 115(17):8475–8483. https://doi.org/10.1021/jp111881b

  8. Tan Z-K et al (Sep. 2014) Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 9(9):687–692. https://doi.org/10.1038/nnano.2014.149

  9. Kumawat NK, Gupta D, Kabra D (2017) “Recent Advances in Metal Halide-Based Perovskite Light-Emitting Diodes,” Energy Technology, vol. 5, no. 10, pp. 1734–1749, Oct. https://doi.org/10.1002/ente.201700356

  10. Yang Y et al (Aug. 2021) Highly efficient pure-blue light‐emitting diodes based on Rubidium and Chlorine Alloyed Metal Halide Perovskite. Adv Mater 33(33). https://doi.org/10.1002/adma.202100783

  11. Liu X-K et al (Jan. 2021) Metal halide perovskites for light-emitting diodes. Nat Mater 20(1):10–21. https://doi.org/10.1038/s41563-020-0784-7

  12. Cao YB et al (Aug. 2023) High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes. Nat Commun 14(1):4611. https://doi.org/10.1038/s41467-023-40150-y

  13. Cho H et al (Aug. 2017) High-efficiency solution‐processed Inorganic Metal Halide Perovskite Light‐Emitting Diodes. Adv Mater 29(31):1700579. https://doi.org/10.1002/adma.201700579

  14. Protesescu L et al (2015) “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX 3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett, vol. 15, no. 6, pp. 3692–3696, https://doi.org/10.1021/nl5048779

  15. Stoumpos CC et al (2013) “Crystal Growth of the Perovskite Semiconductor CsPbBr 3: A New Material for High-Energy Radiation Detection,” Cryst Growth Des, vol. 13, no. 7, pp. 2722–2727, https://doi.org/10.1021/cg400645t

  16. Akbulatov AF et al (2019) “Comparative Intrinsic Thermal and Photochemical Stability of Sn(II) Complex Halides as Next-Generation Materials for Lead-Free Perovskite Solar Cells,” The Journal of Physical Chemistry C, vol. 123, no. 44, pp. 26862–26869, https://doi.org/10.1021/acs.jpcc.9b09200

  17. Ozerova VV et al (Jun. 2023) Enhanced photostability of multication lead halide perovskites through the use of azaadamantane-based modifiers. Mater Today Chem 30:101590. https://doi.org/10.1016/j.mtchem.2023.101590

  18. Zhao S, Mo Q, Wang B, Cai W, Li R, Zang Z (2022) “Inorganic halide perovskites for lighting and visible light communication,” Photonics Res, vol. 10, no. 4, p. 1039, Apr. https://doi.org/10.1364/PRJ.450483

  19. Li X et al (Mar. 2017) All Inorganic Halide Perovskites Nanosystem: synthesis, structural features, Optical Properties and Optoelectronic Applications. Small 13:1603996. https://doi.org/10.1002/smll.201603996

  20. Rao L et al (2018) Tuning the emission spectrum of highly stable cesium lead halide perovskite nanocrystals through poly(lactic acid)-assisted anion-exchange reactions. J Mater Chem C Mater 6(20):5375–5383. https://doi.org/10.1039/C8TC00582F

    Article  CAS  Google Scholar 

  21. Zhou B et al (Dec. 2023) Achieving tunable Cold/Warm White-Light Emission in a single Perovskite Material with Near-Unity Photoluminescence Quantum Yield. Nanomicro Lett 15(1):207. https://doi.org/10.1007/s40820-023-01168-5

  22. Ma Z et al (2022) “Emerging new-generation white light‐emitting diodes based on luminescent lead‐free halide perovskites and perovskite derivatives,” Nano Select, vol. 3, no. 2, pp. 280–297, https://doi.org/10.1002/nano.202100059

  23. Smith MD, Connor BA, Karunadasa HI (2019) “Tuning the Luminescence of Layered Halide Perovskites,” Chem Rev, vol. 119, no. 5, pp. 3104–3139, Mar. https://doi.org/10.1021/acs.chemrev.8b00477

  24. Chenna P, Gandi S, Pookatt S, Parne SR (Sep. 2023) Perovskite white light emitting diodes: a review. Mater Today Electron 5:100057. https://doi.org/10.1016/j.mtelec.2023.100057

  25. Adhikari GC, Thapa S, Zhu H, Zhu P (2019) “Mg 2+ -Alloyed All‐Inorganic Halide Perovskites for White Light‐Emitting Diodes by 3D‐Printing Method,” Adv Opt Mater, vol. 7, no. 20, Oct. https://doi.org/10.1002/adom.201900916

  26. Thapa S, Adhikari GC, Zhu H, Grigoriev A, Zhu P (Dec. 2019) Zn-Alloyed All-Inorganic Halide Perovskite-Based White Light-Emitting Diodes with Superior Color Quality. Sci Rep 9(1):18636. https://doi.org/10.1038/s41598-019-55228-1

  27. Ba Q, Jana A, Wang L, Kim KS (Oct. 2019) Dual Emission of Water-Stable 2D Organic–Inorganic Halide Perovskites with Mn(II) Dopant. Adv Funct Mater 29(43):1904768. https://doi.org/10.1002/adfm.201904768

  28. Wang J, Dong J, Lu F, Sun C, Zhang Q, Wang N (2019) Two-dimensional lead-free halide perovskite materials and devices. J Mater Chem A Mater 7(41):23563–23576. https://doi.org/10.1039/C9TA06455A

    Article  CAS  Google Scholar 

  29. Pandey M, Jacobsen KW, Thygesen KS (Nov. 2016) Band Gap tuning and defect tolerance of Atomically Thin Two-Dimensional Organic–Inorganic Halide Perovskites. J Phys Chem Lett 7:4346–4352. https://doi.org/10.1021/acs.jpclett.6b01998

  30. Zhang J et al (2017) “High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots,” ACS Nano, vol. 11, no. 9, pp. 9294–9302, https://doi.org/10.1021/acsnano.7b04683

  31. Wang K, Park JY, Akriti, Dou L (Jun. 2021) <scp > Two-dimensional</scp > halide perovskite < scp > quantum‐well emitters: a critical review. EcoMat 3(3). https://doi.org/10.1002/eom2.12104

  32. Mauck CM, Tisdale WA (2019) “Excitons in 2D Organic–Inorganic Halide Perovskites,” Trends Chem, vol. 1, no. 4, pp. 380–393, Jul. https://doi.org/10.1016/j.trechm.2019.04.003

  33. Li S, Luo J, Liu J, Tang J (Apr. 2019) Self-trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and potential applications. J Phys Chem Lett 10(8):1999–2007. https://doi.org/10.1021/acs.jpclett.8b03604

  34. Zhang Y et al (2021) “Strong Self-Trapped Exciton Emissions in Two‐Dimensional Na‐In Halide Perovskites Triggered by Antimony Do**,” Angewandte Chemie International Edition, vol. 60, no. 14, pp. 7587–7592, https://doi.org/10.1002/anie.202015873

  35. Li Y et al (2021) (γ-Methoxy propyl amine) 2 PbBr 4: a novel two-dimensional halide hybrid perovskite with efficient bluish white-light emission. Inorg Chem Front 8(8):2119–2124. https://doi.org/10.1039/D0QI01446J

    Article  CAS  Google Scholar 

  36. Wang X et al (2021) Self-trapped exciton emission in an sn(< scp > ii)-doped all-inorganic zero-dimensional zinc halide perovskite variant. Nanoscale 13(36):15285–15291. https://doi.org/10.1039/D1NR04635G

    Article  CAS  PubMed  Google Scholar 

  37. Xu Z, Jiang X, Cai H, Chen K, Yao X, Feng Y (2021) “Toward a General Understanding of Exciton Self-Trap** in Metal Halide Perovskites,” J Phys Chem Lett, vol. 12, no. 43, pp. 10472–10478, Nov. https://doi.org/10.1021/acs.jpclett.1c02291

  38. McCall KM, Stoumpos CC, Kostina SS, Kanatzidis MG, Wessels BW (May 2017) Strong Electron–phonon coupling and self-trapped Excitons in the defect Halide Perovskites A 3 M 2 I 9 (A = cs, rb; M = Bi, Sb). Chem Mater 29(9):4129–4145. https://doi.org/10.1021/acs.chemmater.7b01184

  39. Zhou B et al (Oct. 2022) Emission mechanism of self-trapped Excitons in Sb 3+ -Doped All-Inorganic Metal-Halide Perovskites. J Phys Chem Lett 13:9140–9147. https://doi.org/10.1021/acs.jpclett.2c02759

  40. Yu J et al (Dec. 2018) Broadband extrinsic self-trapped Exciton Emission in Sn‐Doped 2D Lead‐Halide Perovskites. Adv Mater 1806385. https://doi.org/10.1002/adma.201806385

  41. Smith MD, Karunadasa HI (Mar. 2018) White-Light Emission from Layered Halide Perovskites. Acc Chem Res 51(3):619–627. https://doi.org/10.1021/acs.accounts.7b00433

  42. Cai P, Wang X, Seo HJ, Yan X (Apr. 2018) Bluish-white-light-emitting diodes based on two-dimensional lead halide perovskite (C6H5C2H4NH3)2PbCl2Br2. Appl Phys Lett 112(15). https://doi.org/10.1063/1.5023797

  43. Dar WA, Ahmed Z, Iftikhar K (Apr. 2018) Cool white light emission from the yellow and blue emission bands of the Dy(III) complex under UV-excitation. J Photochem Photobiol A Chem 356:502–511. https://doi.org/10.1016/j.jphotochem.2017.12.017

  44. Beegum KAB, Sasi S, Mathew A, Asha AS, Reshmi R (May 2021) Nano fibers of lead free perovskite Cesium Titanium Bromide (CsTiBr 3) thin films by in-house deposition technique. Phys Scr 96(5):055707. https://doi.org/10.1088/1402-4896/abea31

  45. Kumar K, Arun P (Nov. 2017) Defect diffusion assisted formation of cesium metal clusters in cesium halide thin films. J Taibah Univ Sci 11(6):1238–1244. https://doi.org/10.1016/j.jtusci.2016.12.002

  46. Kim H, Kang TW, Chung KS (2003) “Nanoscale Ultraviolet‐Light‐Emitting Diodes Using Wide‐Bandgap Gallium Nitride Nanorods,” Advanced Materials, vol. 15, no. 7–8, pp. 567–569, Apr. https://doi.org/10.1002/adma.200304554

  47. Comin R, Walters G, Thibau ES, Voznyy O, Lu Z-H, Sargent EH (2015) Structural, optical, and electronic studies of wide-bandgap lead halide perovskites. J Mater Chem C Mater 3:8839–8843. https://doi.org/10.1039/C5TC01718A

    Article  CAS  Google Scholar 

  48. Beegum KAB, Sasi S, Thomas C, Mathew A, R R (Jun. 2023) Surface plasmon resonance (SPR) in nanofibers of cesium titanium bromide CsTiBr 3 synthesized by two-stage deposition technique. Phys Scr 98(6):065950. https://doi.org/10.1088/1402-4896/acd4f9

  49. Blancon J-C, Even J, Stoumpos CC, Kanatzidis MG, Mohite AD (2020) “Semiconductor physics of organic–inorganic 2D halide perovskites,” Nat Nanotechnol, vol. 15, no. 12, pp. 969–985, Dec. https://doi.org/10.1038/s41565-020-00811-1

Download references

Acknowledgements

The authors acknowledge Sophisticated Test and Instrumentation Center (STIC), Cochin for their support in characterization.

Funding

The author acknowledges KSCSTE (916/2022), and DST-SERB(CRG/2018/003785) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

K A B and R R have substantial contribution towards conception and design . K A B, S S and C T have contributed to acquisition and interpretation of data. K A B drafted the data and R R revised it critically for important intellectual content. R R and A M approved the final version of the manuscript.

Corresponding author

Correspondence to Reshmi Raman.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

There is no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beegum, K.A.B., Sasi, S., Thomas, C. et al. Bluish-white Light-emitting 2D Sheets of Lead-free Perovskite Cesium Titanium Bromide (CsTiBr3) by a Two-stage Deposition Technique. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03444-4

Keywords

Navigation