Log in

Facile Green Gamma Irradiation of Water Hyacinth Derived-Fluorescent Carbon Dots Functionalized Thiol Moiety for Metal Ion Detection

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescent sensor-based carbon dots (CDs) have significantly developed for sensing metal ions because of their great physical and optical properties, including tunable fluorescence emission, high fluorescence quantum yield, high sensitivity, non-toxicity, and biocompatibility. In this research, a green synthetic approach via simple gamma irradiation for the carbon dot synthesis from water hyacinth was developed since water hyacinth has been classified as an invasive aquatic plant containing cellulose, hemicellulose, and lignin. The thiol moiety (SH) was further functionalized on the surface functional groups of CDs as the “turn-off” fluorescent sensor for metal ion detection. Fluorescence emission displayed a red shift from 451 to 548 nm when excited between 240 and 500 nm. The quantum yield of CDs-SH was elucidated to be 13%, with strong blue fluorescence emission under ultraviolet irridiation (365 nm), high photostability and no photobleaching. The limit of detection was determined at micromolar levels for Hg2+, Cu2+, and Fe3+. CDs-SH could be a real-time monitoring sensor for Hg2+ and Cu2+ as fluorescence quenching was observed within 2 min. Furthermore, paper test-strip based CDs-SH could be applied to detect these metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

This declaration is not applicable.

References

  1. Yahaya Pudza M, Zainal Abidin Z, Abdul Rashid S, Md Yasin F, Noor ASM, Issa MA (2020) Eco-friendly sustainable fluorescent carbon dots for the adsorption of heavy metal ions in aqueous environment. Nanomaterials 10(2). https://doi.org/10.3390/nano10020315

  2. Li M, Chen T, Gooding JJ, Liu J (2019) Review of carbon and graphene quantum dots for sensing. ACS Sens 4(7):1732–1748. https://doi.org/10.1021/acssensors.9b00514

    Article  CAS  PubMed  Google Scholar 

  3. Ghosh T, Das TK, Das P, Banerji P, Das NC (2022) Current scenario and recent advancement of doped carbon dots: a short review scientocracy update (2013–2022). Carbon Lett 32(4):953–977. https://doi.org/10.1007/s42823-022-00339-5

    Article  Google Scholar 

  4. Pajewska-Szmyt M, Buszewski B, Gadzała-Kopciuch R (2020) Carbon dots as rapid assays for detection of mercury(II) ions based on turn-off mode and breast milk. Spectrochim Acta A Mol Biomol Spectrosc 236:118320. https://doi.org/10.1016/j.saa.2020.118320

    Article  CAS  PubMed  Google Scholar 

  5. Cao X, Ma J, Lin Y, Yao B, Li F, Weng W, Lin X (2015) A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions. Spectrochim Acta A Mol Biomol Spectrosc 151:875–880. https://doi.org/10.1016/j.saa.2015.07.034

    Article  CAS  PubMed  Google Scholar 

  6. Qu C, Zhang D, Yang R, Hu J, Qu L (2019) Nitrogen and sulfur co-doped graphene quantum dots for the highly sensitive and selective detection of mercury ion in living cells. Spectrochim Acta A Mol Biomol Spectrosc 206:588–596. https://doi.org/10.1016/j.saa.2018.07.097

    Article  CAS  PubMed  Google Scholar 

  7. Ge J, Shen Y, Wang W, Li Y, Yang Y (2021) N-doped carbon dots for highly sensitive and selective sensing of copper ion and sulfide anion in lake water. J Environ Chem Eng 9(2):105081. https://doi.org/10.1016/j.jece.2021.105081

    Article  CAS  Google Scholar 

  8. Sharma V, Tiwari P, Mobin SM (2017) Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 5(45):8904–8924. https://doi.org/10.1039/C7TB02484C

    Article  CAS  PubMed  Google Scholar 

  9. Bhatt M, Bhatt S, Vyas G, Raval IH, Haldar S, Paul P (2020) Water-dispersible fluorescent carbon dots as bioimaging agents and probes for Hg2+ and Cu2+ ions. ACS Appl Nano Mater 3(7):7096–7104. https://doi.org/10.1021/acsanm.0c01426

    Article  CAS  Google Scholar 

  10. Perumal S, Atchudan R, Edison TNJI, Lee YR (2021) Sustainable synthesis of multifunctional carbon dots using biomass and their applications: a mini-review. J Environ Chem Eng 9(4):105802. https://doi.org/10.1016/j.jece.2021.105802

    Article  CAS  Google Scholar 

  11. Liu ML, Chen BB, Li CM, Huang CZ (2019) Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 21(3):449–471. https://doi.org/10.1039/C8GC02736F

    Article  CAS  Google Scholar 

  12. Yan F, Jiang Y, Sun X, Bai Z, Zhang Y, Zhou X (2018) Surface modification and chemical functionalization of carbon dots: a review. Microchim Acta 185(9):424. https://doi.org/10.1007/s00604-018-2953-9

    Article  CAS  Google Scholar 

  13. Radhakrishnan K, Panneerselvam P, Marieeswaran M (2019) A green synthetic route for the surface-passivation of carbon dots as an effective multifunctional fluorescent sensor for the recognition and detection of toxic metal ions from aqueous solution. Anal Methods 11(4):490–506. https://doi.org/10.1039/C8AY02451K

    Article  CAS  Google Scholar 

  14. Xu D, Lin Q, Chang H-T (2020) Recent advances and sensing applications of carbon dots. Small Methods 4(4):1900387. https://doi.org/10.1002/smtd.201900387

    Article  CAS  Google Scholar 

  15. Saikia D, Dutta P, Sarma NS, Adhikary NC (2016) CdTe/ZnS core/shell quantum dot-based ultrasensitive PET sensor for selective detection of hg (II) in aqueous media. Sens Actuators B Chem 230:149–156. https://doi.org/10.1016/j.snb.2016.02.035

    Article  CAS  Google Scholar 

  16. Ke J, Li X, Zhao Q, Hou Y, Chen J (2014) Ultrasensitive quantum dot fluorescence quenching assay for selective detection of mercury ions in drinking water. Sci Rep 4(1):5624. https://doi.org/10.1038/srep05624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gong T, Liu J, Liu X, Liu J, **ang J, Wu Y (2016) A sensitive and selective sensing platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks. Food Chem 213:306–312. https://doi.org/10.1016/j.foodchem.2016.06.091

    Article  CAS  PubMed  Google Scholar 

  18. Prathumsuwan T, Jaiyong P, In I, Paoprasert P (2019) Label-free carbon dots from water hyacinth leaves as a highly fluorescent probe for selective and sensitive detection of borax. Sens Actuators B Chem 299:126936. https://doi.org/10.1016/j.snb.2019.126936

    Article  CAS  Google Scholar 

  19. Deka MJ, Dutta P, Sarma S, Medhi OK, Talukdar NC, Chowdhury D (2019) Carbon dots derived from water hyacinth and their application as a sensor for pretilachlor. Heliyon 5(6):e01985. https://doi.org/10.1016/j.heliyon.2019.e01985

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhao P, Zhang Q, Cao J, Qian C, Ye J, Xu S, Zhang Y, Li Y (2022) Facile and green synthesis of highly fluorescent carbon quantum dots from water hyacinth for the detection of ferric iron and cellular imaging. Nanomaterials 12(9):1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tan Q, Li X, Sun P, Zhao J, Yang Q, Wang L, Deng Y, Shen G (2022) Fluorescent carbon dots from water hyacinth as detection sensors for ferric ions: the preparation and optimisation using response surface methodology. Anal Methods 14(36):3573–3582. https://doi.org/10.1039/D2AY01182D

    Article  CAS  PubMed  Google Scholar 

  22. Chang S-Q, Kang B, Dai Y-D, Zhang H-X, Chen D (2011) One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a γ-radiation route. Nanoscale Res Lett 6(1):591. https://doi.org/10.1186/1556-276X-6-591

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang T, Reckmeier CJ, Lu S, Li Y, Cheng Y, Liao F, Rogach AL, Shao M (2016) Gamma ray shifted and enhanced photoluminescence of graphene quantum dots. J Mater Chem C 4(44):10538–10544. https://doi.org/10.1039/C6TC03100E

    Article  CAS  Google Scholar 

  24. Raju SP, Hareesh K, Chethan Pai S, Dhole SD, Sanjeev G (2017) Preparation of fluorescent CdTe@CdS core@shell quantum dots using chemical free gamma irradiation method. J Lumin 192:17–24. https://doi.org/10.1016/j.jlumin.2017.06.019

    Article  CAS  Google Scholar 

  25. Bekasova OD, Revina AA, Rusanov AL, Kornienko ES, Kurganov BI (2013) Effect of gamma-ray irradiation on the size and properties of CdS quantum dots in reverse micelles. Radiat Phys Chem 92:87–92. https://doi.org/10.1016/j.radphyschem.2013.06.025

    Article  CAS  Google Scholar 

  26. Alehdaghi H, Assar E, Azadegan B, Baedi J, Mowlavi AA (2020) Investigation of optical and structural properties of aqueous CdS quantum dots under gamma irradiation. Radiat Phys Chem 166:108476. https://doi.org/10.1016/j.radphyschem.2019.108476

    Article  CAS  Google Scholar 

  27. Wechakorn K, Utapong T, Chutimasakul T, Sirisit N, Kwamman T (2023) Optical properties of carbon dots derived from table sugar via gamma irradiation. J Phys Conf Ser 2431(1):012014. https://doi.org/10.1088/1742-6596/2431/1/012014

    Article  Google Scholar 

  28. Wechakorn K, Sangangam P, Puengposop N, Lertsarawut P, Kwamman T (2020) Synthesis of carbon quantum dot from water hyacinth stalk by radiation processing. Orient J Chem 36(5):897–902. https://doi.org/10.13005/ojc/360514

    Article  CAS  Google Scholar 

  29. Park J-D, Zheng W (2012) Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health 45(6):344–352. https://doi.org/10.3961/jpmph.2012.45.6.344

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cui X, Zhu L, Wu J, Hou Y, Wang P, Wang Z, Yang M (2015) A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens Bioelectron 63:506–512. https://doi.org/10.1016/j.bios.2014.07.085

    Article  CAS  PubMed  Google Scholar 

  31. Gworek B, Bemowska-Kałabun O, Kijeńska M, Wrzosek-Jakubowska J (2016) Mercury in marine and oceanic waters—a review. Wat Air and Soil Poll 227(10):371. https://doi.org/10.1007/s11270-016-3060-3

    Article  CAS  Google Scholar 

  32. Turski ML, Thiele DJ (2009) New roles for copper metabolism in cell proliferation, signaling, and disease. J Biol Chem 284(2):717–721. https://doi.org/10.1074/jbc.R800055200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amyotrophic lateral sclerosis). Chem Rev 106(6):1995–2044. https://doi.org/10.1021/cr040410w

    Article  CAS  PubMed  Google Scholar 

  34. Wechakorn K, Prabpai S, Suksen K, Kanjanasirirat P, Pewkliang Y, Borwornpinyo S, Kongsaeree P (2018) A rhodamine-triazole fluorescent chemodosimeter for Cu2+ detection and its application in bioimaging. Lumin 33(1):64–70. https://doi.org/10.1002/bio.3373

    Article  CAS  Google Scholar 

  35. Liu Y, Zhang J, Ru J, Yao X, Yang Y, Li X, Tang X, Zhang G, Liu W (2016) A naked-eye visible and turn-on fluorescence probe for Fe3+ and its bioimaging application in living cells. Sens Actuators B Chem 237:501–508. https://doi.org/10.1016/j.snb.2016.06.123

    Article  CAS  Google Scholar 

  36. Wang Q, Liu X, Zhang L, Lv Y (2012) Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Analyst 137(22):5392–5397. https://doi.org/10.1039/C2AN36059D

    Article  CAS  PubMed  Google Scholar 

  37. Wei J, Zhang X, Sheng Y, Shen J, Huang P, Guo S, Pan J, Liu B, Feng B (2014) Simple one-step synthesis of water-soluble fluorescent carbon dots from waste paper. New J Chem 38(3):906–909. https://doi.org/10.1039/C3NJ01325A

    Article  CAS  Google Scholar 

  38. Bano D, Kumar V, Chandra S, Singh VK, Mohan S, Singh DK, Talat M, Hasan SH (2019) Synthesis of highly fluorescent nitrogen-rich carbon quantum dots and their application for the turn-off detection of cobalt (II). Opt Mater 92:311–318. https://doi.org/10.1016/j.optmat.2019.04.045

    Article  CAS  Google Scholar 

  39. Shen J, Shang S, Chen X, Wang D, Cai Y (2017) Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater Sci Eng C 76:856–864. https://doi.org/10.1016/j.msec.2017.03.178

    Article  CAS  Google Scholar 

  40. Wang C, Sun D, Chen Y, Zhuo K (2016) A hydrothermal route for synthesizing highly luminescent sulfur- and nitrogen-co-doped carbon dots as nanosensors for Hg2+. RSC Adv 6(89):86436–86442. https://doi.org/10.1039/C6RA16357B

    Article  CAS  Google Scholar 

  41. Sukarni S, Zakaria Y, Sumarli S, Wulandari R, Ayu Permanasari A, Suhermanto M (2019) Physical and chemical properties of water hyacinth (Eichhornia crassipes) as a sustainable biofuel feedstock. IOP Confer Ser: Mater Sci Eng 515(1):012070. https://doi.org/10.1088/1757-899X/515/1/012070

    Article  CAS  Google Scholar 

  42. He Z, Cheng J, Yan W, Long W, Ouyang H, Hu X, Liu M, Zhou N, Zhang X, Wei Y (2021) One-step preparation of green tea ash derived and polymer functionalized carbon quantum dots via the thiol-ene click chemistry. Inorg Chem Commun 130:108743. https://doi.org/10.1016/j.inoche.2021.108743

    Article  CAS  Google Scholar 

  43. Sekar A, Yadav R, Easwaramoorthy D (2022) N-Doped fluorescent carbon nanodots derived out of gum ghatti for the fluorescence tracking of mercury ions Hg2+ in the aqueous phase. Mater Today: Proc 48:427–437. https://doi.org/10.1016/j.matpr.2020.11.676

    Article  CAS  Google Scholar 

  44. Kim Y, Kim J (2020) Bioinspired thiol functionalized carbon dots for rapid detection of lead (II) ions in human serum. Opt Mater 99:109514. https://doi.org/10.1016/j.optmat.2019.109514

    Article  CAS  Google Scholar 

  45. Zhang J, Wang J, Fu J, Fu X, Gan W, Hao H (2018) Rapid synthesis of N, S co-doped carbon dots and their application for Fe3+ ion detection. J Nanoparticle Res 20(2):41. https://doi.org/10.1007/s11051-018-4141-6

    Article  CAS  Google Scholar 

  46. Sahoo NK, Jana GC, Aktara MN, Das S, Nayim S, Patra A, Bhattacharjee P, Bhadra K, Hossain M (2020) Carbon dots derived from lychee waste: application for Fe3+ ions sensing in real water and multicolor cell imaging of skin melanoma cells. Mater Sci Eng C 108:110429. https://doi.org/10.1016/j.msec.2019.110429

    Article  CAS  Google Scholar 

  47. Zhao X, Liao S, Wang L, Liu Q, Chen X (2019) Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion. Talanta 201:1–8. https://doi.org/10.1016/j.talanta.2019.03.095

    Article  CAS  PubMed  Google Scholar 

  48. Bano D, Kumar V, Singh VK, Hasan SH (2018) Green synthesis of fluorescent carbon quantum dots for the detection of mercury(ii) and glutathione. New J Chem 42(8):5814–5821. https://doi.org/10.1039/C8NJ00432C

    Article  CAS  Google Scholar 

  49. Xue M, Zhan Z, Zou M, Zhang L, Zhao S (2016) Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging. New J Chem 40(2):1698–1703. https://doi.org/10.1039/C5NJ02181B

    Article  CAS  Google Scholar 

  50. Pourreza N, Ghomi M (2019) Green synthesized carbon quantum dots from Prosopis juliflora leaves as a dual off-on fluorescence probe for sensing mercury (II) and chemet drug. Mater Sci Eng C 98:887–896. https://doi.org/10.1016/j.msec.2018.12.141

    Article  CAS  Google Scholar 

  51. Liu Y, Wang H, Cui Y, Chen N (2023) Removal of copper ions from wastewater: a review. Int J Environ Res Public Health 20(5):3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao L, Zhang Y, Wang L, Lyu H, **a S, Tang J (2022) Effective removal of hg(II) and MeHg from aqueous environment by ball milling aided thiol-modification of biochars: Effect of different pyrolysis temperatures. Chemosphere 294:133820. https://doi.org/10.1016/j.chemosphere.2022.133820

    Article  CAS  PubMed  Google Scholar 

  53. Huang G, Han D, Song J, Li L, Pei L (2022) A sharp contrasting occurrence of iron-rich groundwater in the Pearl River Delta during the past dozen years (2006–2018): the genesis and mitigation effect. Sci Total Environ 829:154676. https://doi.org/10.1016/j.scitotenv.2022.154676

    Article  CAS  PubMed  Google Scholar 

  54. Wei J-M, Liu B-T, Zhang X, Song C-C (2018) One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ ion detection. New Carbon Mater 33(4):333–340. https://doi.org/10.1016/S1872-5805(18)60343-9

    Article  CAS  Google Scholar 

  55. Sun D, Liu T, Wang C, Yang L, Yang S, Zhuo K (2020) Hydrothermal synthesis of fluorescent carbon dots from gardenia fruit for sensitive on-off-on detection of Hg2+ and cysteine. Spectrochim Acta A Mol Biomol Spectrosc 240:118598. https://doi.org/10.1016/j.saa.2020.118598

    Article  CAS  PubMed  Google Scholar 

  56. Gao H, Pang Y, Li L, Zhu C, Ma C, Gu J, Wu Y, Chen G (2020) One-step synthesis of the nitrogen and sulfur codoped carbon dots for detection of lead and copper ions in aqueous solution.JSens 2020:8828456.https://doi.org/10.1155/2020/8828456

  57. Huang A, Yang X, **a T, He D, Zhang R, Li Z, Yang S, Liu Y, Wen X (2022) A fluorescence probe of sulfur quantum dots for sensitive detection of copper ions in Paris polyphylla var. Yunnanensis. Microchem J 179:107639. https://doi.org/10.1016/j.microc.2022.107639

    Article  CAS  Google Scholar 

  58. Liu Y, Zhao Y, Zhang Y (2014) One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sens Actuators B Chem 196:647–652. https://doi.org/10.1016/j.snb.2014.02.053

    Article  CAS  Google Scholar 

  59. Yu Y, Zhu Z, Liu Z, Dong H, Liu Y, Wei M, Huo P, Li C, Yan Y (2019) Construction of the biomass carbon quantum dots modified heterojunction Bi2WO6/Cu2O photocatalysis for enhancing light utilization and mechanism insight. J Taiwan Inst Chem Eng 102:197–201. https://doi.org/10.1016/j.jtice.2019.05.029

    Article  CAS  Google Scholar 

  60. Vandarkuzhali SAA, Jeyalakshmi V, Sivaraman G, Singaravadivel S, Krishnamurthy KR, Viswanathan B (2017) Highly fluorescent carbon dots from pseudo-stem of banana plant: applications as nanosensor and bio-imaging agents. Sens Actuators B Chem 252:894–900. https://doi.org/10.1016/j.snb.2017.06.088

    Article  CAS  Google Scholar 

  61. Sachdev A, Gopinath P (2015) Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 140(12):4260–4269. https://doi.org/10.1039/C5AN00454C

    Article  CAS  PubMed  Google Scholar 

  62. Bandi R, Gangapuram BR, Dadigala R, Eslavath R, Singh SS, Guttena V (2016) Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Adv 6(34):28633–28639. https://doi.org/10.1039/C6RA01669C

    Article  CAS  Google Scholar 

  63. Wang B, Tan H, Zhang T, Duan W, Zhu Y (2019) Hydrothermal synthesis of N-doped carbon dots from an ethanolamine–ionic liquid gel to construct label-free multifunctional fluorescent probes for Hg2+, Cu2+ and S2O32. Analyst 144(9):3013–3022. https://doi.org/10.1039/C9AN00116F

    Article  CAS  PubMed  Google Scholar 

  64. Das P, Maruthapandi M, Saravanan A, Natan M, Jacobi G, Banin E, Gedanken A (2020) Carbon dots for heavy-metal sensing, pH-sensitive cargo delivery, and antibacterial applications. ACS Appl Nano Mater 3(12):11777–11790. https://doi.org/10.1021/acsanm.0c02305

    Article  CAS  Google Scholar 

  65. Wang C, Wang Y, Shi H, Yan Y, Liu E, Hu X, Fan J (2019) A strong blue fluorescent nanoprobe for highly sensitive and selective detection of mercury(II) based on sulfur doped carbon quantum dots. Mater Chem Phys 232:145–151. https://doi.org/10.1016/j.matchemphys.2019.04.071

    Article  CAS  Google Scholar 

  66. Zhu X, Zhao Z, Chi X, Gao J (2013) Facile, sensitive, and ratiometric detection of mercuric ions using GSH-capped semiconductor quantum dots. Analyst 138(11):3230–3237. https://doi.org/10.1039/C3AN00011G

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Thailand Science Research and Innovation (TSRI) and partly supported by Reinventing University Project (RMUTT) 2022, Office of the Ministry of Higher Education, Science, Research and Innovation, Thailand Science Research and Innovation. P. Thangsunan was supported by the Center of Excellence in Materials Science and Technology, the Materials Science Research Center (MSRC), Faculty of Science, Chiang Mai University, Thailand. We would like to thank the Thailand Institute of Nuclear Technology (Public Organization) and RMUTT Central Lab, Institute of Research and Development, Rajamangala University of Technology Thanyaburi, for facility support.

Funding

This work was supported by Thailand Science Research and Innovation (TSRI) and partly supported by Reinventing University Project (RMUTT) 2022, Office of the Ministry of Higher Education, Science, Research and Innovation, Thailand Science Research and Innovation. P. Thangsunan was supported by the Center of Excellence in Materials Science and Technology, the Materials Science Research Center (MSRC), Faculty of Science, Chiang Mai University, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

Methodology: Chuleekron Seesuea, Kanokorn Wechakorn; Formal analysis and investigation: Chuleekron Seesuea, Tanagorn Sangtawesin, Pattanapong Thangsunan; Writing - original draft preparation: Chuleekron Seesuea, Kanokorn Wechakorn; Writing - review and editing: Chuleekron Seesuea, Pattanapong Thangsunan, Tanagorn Sangtawesin, Kanokorn Wechakorn; Funding acquisition: Pattanapong Thangsunan, Tanagorn Sangtawesin, Kanokorn Wechakorn; Resources and Conceptualization: Kanokorn Wechakorn.

Corresponding author

Correspondence to Kanokorn Wechakorn.

Ethics declarations

Ethics approval and consent to participate

This declaration is not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seesuea, C., Sangtawesin, T., Thangsunan, P. et al. Facile Green Gamma Irradiation of Water Hyacinth Derived-Fluorescent Carbon Dots Functionalized Thiol Moiety for Metal Ion Detection. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03408-8

Keywords

Navigation