Log in

BODIPY Based OFF-ON Fluorescent Probe for Endogenous Carbon Monoxide Imaging in Living Cells

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO) is one of the signaling molecules that are ubiquitous in humans, which involves in the regulation of human physiology and pathology. In this work, the probe PEC was designed and synthesized based on BODIPY fluorophore that can selectively detect CO through reducing the nitro group to amino group, resulting in a “turn-on” fluorescence response with a simultaneous increase in the concentration of CO. The response is selective over a variety of relevant reactive free radicals, ions, and amino acid species. PEC has the advantages of good stability, good water solubility, and obvious changes in fluorescence signals. In addition, PEC can be used to detect and track endogenous CO in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Supplementary material related to this article can be found in the online version.

References

  1. Zhou F, Hu X, Gao M, Cheng T, Liu G (2016) An imidazolium-modified chiral rhodium/diamine-functionalized periodic mesoporous organosilica for asymmetric transfer hydrogenation of α-haloketones and benzils in aqueous medium. Green Chem 18:5651–5657

    Article  CAS  Google Scholar 

  2. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD (2017) Fluorescent chemosensors: the past, present and future. Chem Soc Rev 46:7105–7123

    Article  CAS  PubMed  Google Scholar 

  3. Chan J, Dodani SC, Chang CJ (2012) Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem 4:973–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Motterlini R, Otterbein LE (2010) The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9:728–743

    Article  CAS  PubMed  Google Scholar 

  5. Chen T-R, Wu F-S, Lee H-P, Chen KHC (2016) Diiridium Bimetallic Complexes function as a redox switch to directly Split Carbonate into Carbon Monoxide and Oxygen. J Am Chem Soc 138:3643–3646

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Yu S, Liu W, Fu L, Wang Y, Li J, Chen L (2018) Molecular imprinting based hybrid ratiometric fluorescence Sensor for the visual determination of bovine hemoglobin. ACS Sens 3:378–385

    Article  CAS  PubMed  Google Scholar 

  7. Yang J, Zhou J, Lv Z, Wei W, Song H (2015) A real-time monitoring system of Industry Carbon Monoxide based on Wireless Sensor Networks. Sensors 15:29535–29546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tang Z, Song B, Ma H, Luo T, Guo L, Yuan J (2019) Mitochondria-Targetable Ratiometric Time-Gated Luminescence Probe for Carbon Monoxide based on Lanthanide Complexes. Anal Chem 91:2939–2946

    Article  CAS  PubMed  Google Scholar 

  9. Yuan L, Lin W, Tan L, Zheng K, Huang W (2013) Lighting up Carbon Monoxide: fluorescent probes for monitoring CO in living cells. Angew Chem Int Ed 52:1628–1630

    Article  CAS  Google Scholar 

  10. Wu L, Wang R, Monoxide C (2005) Endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 57:585–630

    Article  CAS  PubMed  Google Scholar 

  11. Milas L, Hittelman WN (2009) Cancer Stem cells and Tumor Response to Therapy: current problems and future prospects. Semin Radiat Oncol 19:96–105

    Article  PubMed  Google Scholar 

  12. Kitamuro T, Takahashi K, Ogawa K, Udono-Fujimori R, Takeda K, Furuyama K, Nakayama M, Sun J, Fujita H, Hida W, Hattori T, Shirato K, Igarashi K, Shibahara S (2003) Bach1 functions as a hypoxia-inducible repressor for the Heme Oxygenase-1 gene in human cells. J Biol Chem 278:9125–9133

    Article  CAS  PubMed  Google Scholar 

  13. de la Torre C, Toscani A, Marín-Hernández C, Robson JA, Terencio MC, White AJP, Alcaraz MJ, Wilton-Ely JDET, Martínez-Máñez R, Sancenón F (2017) Ex vivo Tracking of endogenous CO with a ruthenium(II) complex. J Am Chem Soc 139:18484–18487

    Article  CAS  PubMed  Google Scholar 

  14. Jia R, Song P, Wang J, Mai H, Li S, Cheng Y, Wu S (2018) Self-assembled fluorescent nanoprobe based on Forster Resonance Energy transfer for Carbon Monoxide in living cells and animals via ligand exchange. Anal Chem 90:7117–7121

    Article  CAS  PubMed  Google Scholar 

  15. Morita T, Mitsialis SA, Koike H, Liu Y, Kourembanas S (1997) Carbon Monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J Biol Chem 272:32804–32809

    Article  CAS  PubMed  Google Scholar 

  16. Ling K, Men F, Wang W-C, Zhou Y-Q, Zhang H-W, Ye D-W (2018) Carbon Monoxide and its controlled release: therapeutic application, detection, and development of Carbon Monoxide releasing molecules (CORMs). J Med Chem 61:2611–2635

    Article  CAS  PubMed  Google Scholar 

  17. Measurement of Endogenous (2002) Carbon Monoxide formation in Biological Systems. Antioxid Redox Sign 4:271–277

    Article  Google Scholar 

  18. Esteban J, Ros-Lis JV, Martínez-Máñez R, Marcos MD, Moragues M, Soto J, Sancenón F (2010) Sensitive and selective chromogenic sensing of Carbon Monoxide by using Binuclear Rhodium Complexes. Angew Chem Int Ed 49:4934–4937

    Article  CAS  Google Scholar 

  19. Moragues ME, Esteban J, Ros-Lis JV, Martínez-Máñez R, Marcos MD, Martínez M, Soto J, Sancenón F (2011) Sensitive and selective chromogenic sensing of Carbon Monoxide via Reversible Axial CO Coordination in Binuclear Rhodium Complexes. J Am Chem Soc 133:15762–15772

    Article  CAS  PubMed  Google Scholar 

  20. Benito-Garagorri D, Puchberger M, Mereiter K, Kirchner K (2008) Stereospecific and reversible CO binding at Iron Pincer Complexes. Angew Chem Int Ed 47:9142–9145

    Article  CAS  Google Scholar 

  21. Yan T, Chen J, Wu S, Mao Z, Liu Z (2014) A rationally designed fluorescence Chemosensor for On-Site monitoring of Carbon Monoxide in Air. Org Lett 16:3296–3299

    Article  CAS  PubMed  Google Scholar 

  22. Ohata J, Bruemmer KJ, Chang CJ (2019) Activity-based sensing methods for monitoring the reactive Carbon Species Carbon Monoxide and Formaldehyde in Living Systems. Acc Chem Res 52:2841–2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marín-Hernández C, Toscani A, Sancenón F, Wilton-Ely JDET, Martínez-Máñez R (2016) Chromo-fluorogenic probes for carbon monoxide detection. Chem Comm 52:5902–5911

    Article  PubMed  Google Scholar 

  24. Liu X, Li N, Li M, Chen H, Zhang N, Wang Y, Zheng K (2020) Recent progress in fluorescent probes for detection of carbonyl species: Formaldehyde, carbon monoxide and phosgene. Coord Chem Rev 404:213109

    Article  CAS  Google Scholar 

  25. Kumar N, Bhalla V, Kumar M (2013) Recent developments of fluorescent probes for the detection of gasotransmitters (NO, CO and H2S). Coord Chem Rev 257:2335–2347

    Article  CAS  Google Scholar 

  26. Heinemann SH, Hoshi T, Westerhausen M, Schiller A (2014) Carbon monoxide – physiology, detection and controlled release. Chem Comm 50:3644–3660

    Article  CAS  PubMed  Google Scholar 

  27. Zhang W, Wang Y, Dong J, Zhang Y, Zhu J, Gao J (2019) Rational design of stable near-infrared cyanine-based probe with remarkable large Stokes Shift for monitoring Carbon monoxide in living cells and in vivo. Dye Pigment 171:107753

    Article  CAS  Google Scholar 

  28. Tian X, Liu X, Wang A, Lau C, Lu J (2018) Bioluminescence Imaging of Carbon Monoxide in living cells and Nude mice based on Pd0-Mediated tsuji–trost reaction. Anal Chem 90:5951–5958

    Article  CAS  PubMed  Google Scholar 

  29. Deng Y, Hong J, Zhou E, Feng G (2019) Near-infrared fluorescent probe with a super large Stokes shift for tracking CO in living systems based on a novel coumarin-dicyanoisophorone hybrid. Dye Pigment 170:107634

    Article  CAS  Google Scholar 

  30. Zhou X, Zeng Y, Liyan C, Wu X, Yoon J (2016) A fluorescent sensor for Dual-Channel discrimination between Phosgene and a nerve-gas Mimic. Angew Chem Int Ed 55:4729–4733

    Article  CAS  Google Scholar 

  31. Pal S, Mukherjee M, Sen B, Mandal SK, Lohar S, Chattopadhyay P, Dhara K (2015) A new fluorogenic probe for the selective detection of carbon monoxide in aqueous medium based on pd(0) mediated reaction. Chem Commun 51:4410–4413

    Article  CAS  Google Scholar 

  32. Liu K, Kong X, Ma Y, Lin W (2018) Preparation of a Nile Red–Pd-based fluorescent CO probe and its imaging applications in vitro and in vivo. Nat Protoc 13:1020–1033

    Article  CAS  PubMed  Google Scholar 

  33. Zheng K, Lin W, Tan L, Chen H, Cui H (2014) A unique carbazole–coumarin fused two-photon platform: development of a robust two-photon fluorescent probe for imaging carbon monoxide in living tissues. Chem Sci 5:3439–3448

    Article  CAS  Google Scholar 

  34. Sun M, Yu H, Zhang K, Wang S, Hayat T, Alsaedi A, Huang D (2018) Palladacycle based fluorescence Turn-On probe for sensitive detection of Carbon Monoxide. ACS Sens 3:285–289

    Article  CAS  PubMed  Google Scholar 

  35. Wang N, Li Z, Liu W, Deng T, Yang J, Yang R, Li J (2019) Upconversion Nanoprobes for in Vitro and ex vivo measurement of Carbon Monoxide. ACS Appl Mater Interfaces 11:26684–26689

    Article  CAS  PubMed  Google Scholar 

  36. Michel BW, Lippert AR, Chang CJ, Reaction-Based A (2012) Fluorescent probe for selective imaging of Carbon Monoxide in living cells using a palladium-mediated Carbonylation. J Am Chem Soc 134:15668–15671

    Article  CAS  PubMed  Google Scholar 

  37. Feng W, Liu D, Zhai Q, Feng G (2017) Lighting up carbon monoxide in living cells by a readily available and highly sensitive colorimetric and fluorescent probe. Sens Actuators B: Chem 240:625–630

    Article  CAS  Google Scholar 

  38. Feng W, Liu D, Feng S, Feng G (2016) Readily available fluorescent probe for Carbon Monoxide Imaging in living cells. Anal Chem 88:10648–10653

    Article  CAS  PubMed  Google Scholar 

  39. Feng W, Hong J, Feng G (2017) Colorimetric and ratiometric fluorescent detection of carbon monoxide in air, aqueous solution, and living cells by a naphthalimide-based probe. Sens Actuators B: Chem 251:389–395

    Article  CAS  Google Scholar 

  40. Feng W, Feng G (2018) A readily available colorimetric and near-infrared fluorescent turn-on probe for detection of carbon monoxide in living cells and animals. Sens Actuators B: Chem 255:2314–2320

    Article  CAS  Google Scholar 

  41. Feng S, Liu D, Feng W, Feng G (2017) Allyl Fluorescein Ethers as Promising fluorescent probes for Carbon Monoxide Imaging in living cells. Anal Chem 89:3754–3760

    Article  CAS  PubMed  Google Scholar 

  42. Toscani A, Marín-Hernández C, Robson JA, Chua E, Dingwall P, White AJP, Sancenón F, de la Torre C, Martínez-Máñez R, Wilton-Ely JDET (2019) Highly sensitive and selective Molecular Probes for Chromo-Fluorogenic sensing of Carbon Monoxide in Air, Aqueous Solution and cells. Chem Eur J 25:2069–2081

  43. Dhara K, Lohar S, Patra A, Roy P, Saha SK, Sadhukhan GC, Chattopadhyay P (2018) A New Lysosome-Targetable Turn-On fluorogenic probe for Carbon Monoxide Imaging in living cells. Anal Chem 90:2933–2938

    Article  CAS  PubMed  Google Scholar 

  44. Feng W, Feng S, Feng G (2019) A fluorescent ESIPT probe for imaging CO-Releasing Molecule-3 in Living Systems. Anal Chem 91:8602–8606

    Article  CAS  PubMed  Google Scholar 

  45. Wang Z, Liu C, Wang X, Duan Q, Jia P, Zhu H, Li Z, Zhang X, Ren X, Zhu B, Sheng W (2019) A metal-free near-infrared fluorescent probe for tracking the glucose-induced fluctuations of carbon monoxide in living cells and zebrafish. Sens Actuators B: Chem 291:329–336

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (21872095), “111” Innovation and Talent Recruitment Base on Photochemical and Energy Materials (No. D18020), Shanghai Engineering Research Center of Green Energy Chemical Engineering (No. 18DZ2254200).

Author information

Authors and Affiliations

Authors

Contributions

Lei Zhao synthesized the probe and mesured the spectra properites. Rui Chen and Cheng Jia conducted cell imagings. Jiandong Liu prepared the figures. Guohua Liu revised the manuscript. Tanyu cheng wrote and revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Tanyu Cheng.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

No human or animal studies were performed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Chen, R., Jia, C. et al. BODIPY Based OFF-ON Fluorescent Probe for Endogenous Carbon Monoxide Imaging in Living Cells. J Fluoresc 34, 1793–1799 (2024). https://doi.org/10.1007/s10895-023-03403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03403-z

Keywords

Navigation