Log in

Exploration of Coumarin Derivative: Experimental and Computational Modeling for Dipole Moment Estimation and Thermal Sensing Application

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The Optical properties of the FBTC (1-((4-((5-chlorobenzo[d]oxazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)methyl)-3H-benzo[f]chromen-3-one) molecule were studied experimentally and theoretically. The spectra of absorption and fluorescence were recorded in various solvents to explore their Solvatochromic behavior and dipole moment at room temperature. To determine the ground and excited state of dipole moment experimentally and theoretically, we employed different Solvatochromic techniques, including microscopic solvent polarity functions developed by Lippert, Bakhshiev, Kawaski-Chamma-Viallet, and Reichardt’s, as well as density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The stability of the excited state dipole moment in FBTC is higher. Using prime functional, FBTC was optimized in its ground state, and its HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital), energies were estimated. These values were then compared with those obtained through cyclic voltammetry. Based on the HOMO and LUMO values given, we calculated the global reactivity parameter and energy gap, which was found to be low at 3.77 eV. This study also includes an estimation of electron absorption energies and oscillator strength. Natural population analysis (NPA), Milliken atomic charge, and molecular electrostatic potential (MESP) map are correlated. In addition, FBTC exhibited exceptional physiological temperature sensing behaviour from 20 °C -65 °C with high relative sensitivity and firm stability. Hence these results confirm that FBTC is a potential candidate for photonic devices and it’s also applicable in optical temperature sensing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

References

  1. Tainaka K, Tanaka K, Ikeda S, Nishiza K, Unzai T, Fujiwara Y, Saito I, Okamoto A (2007) PRODAN-conjugated DNA: Synthesis and photochemical properties. J Am Chem Soc 129:15. https://doi.org/10.1021/ja069156

    Article  Google Scholar 

  2. Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB (2009) Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109:897–1091. https://doi.org/10.1021/cr000013v

    Article  CAS  PubMed  Google Scholar 

  3. Lee EZ, Lee SU, Nam-Su Heo GD, Stucky Y-S, Hong WH (2012) A fluorescent sensor for selective detection of cyanide using mesoporous graphitic carbon (IV) nitride. Chem Commun 48:3942–3944. https://doi.org/10.1039/C2CC17909A

    Article  CAS  Google Scholar 

  4. Reynolds GA, Drexhage KH (1975) New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers. Opt Commun 13:222–225

    Article  CAS  Google Scholar 

  5. BenAzaza N, Elleuch S, Rasheed M, Gindre D, Abid S, Barille R, Abid Y, Amma H (2019) 3-(p-nitrophenyl)Coumarin derivatives: Synthesis, linear and nonlinear optical properties. Opt Mater 96:109328. https://doi.org/10.1016/j.optmat.2019.109328

    Article  CAS  Google Scholar 

  6. Costela A, Garcia-Moreno I, Figuera JM, Amat-Guerri F, Sastre R (1998) Polymeric matrices for lasing dyes: Recent developments. Laser Chem 18:63–84. https://doi.org/10.1155/1998/71976

    Article  CAS  Google Scholar 

  7. Trenor SR, Shultz AR, Love BJ, Long TE (2004) Coumarins in polymers: From light harvesting to photo-cross-linkable tissue scaffolds. Chem Rev 104:3059–3077. https://doi.org/10.1021/cr030037c

    Article  CAS  PubMed  Google Scholar 

  8. Drexhage KH (2005) Structure and properties of laser dyes. Top Appl Phys 1:155–200

    Article  Google Scholar 

  9. Wadhwa P, Jain P, Rudrawar S, Jadhav HRA (2018) Quinoline, coumarin and other heterocyclic analogs based HIV-1 integrase inhibitors. Curr Drug Discov Technol 15:2–19. https://doi.org/10.2174/1570163814666170531115452

    Article  CAS  PubMed  Google Scholar 

  10. Brase S, Glaser F, Hurrle T (2016) 11.1 General considerations of coumarins. Privileged scaffolds in medicinal chemistry: Design, synthesis, evaluation. R Soc Chem 287–231

  11. Varghese A, Akshaya KB (2017) Application of fluorescence in solvatochromic studies of organic compounds. J Fluoresc 2018:99–121

    Google Scholar 

  12. Liptay W (1974) Excited-state. In: Lim EC (ed.) Academic Press, New York

  13. De Haas MP, Warman JM (1952) photon-induced molecular charge separation studied by nanosecond time-resolved microwave conductivity. Chem Phys 73:35–53. https://doi.org/10.1016/0301-0104(82)85148-3

    Article  Google Scholar 

  14. Lombardi JR (1969) Dipole moments of the lowest singlet π*←π states in phenol and aniline by the optical stark effect. Chem Phys 50:3780. https://doi.org/10.1063/1.1671626

    Article  CAS  Google Scholar 

  15. Kawski A, Kukliński B, Bojarski P (2005) Dipole moment of aniline in the excited S1 state from thermochromic effect on electronic spectra. Chem Phys Lett 415:251–255. https://doi.org/10.1016/j.cplett.2005.09.008

    Article  CAS  Google Scholar 

  16. Rosell FI, Boxer SG (2003) Biochemistry polarized absorption spectra of green fluorescent protein single crystals: Transition dipole moment directions. Biochemistry 42:177–183. https://doi.org/10.1021/bi0266535

    Article  CAS  PubMed  Google Scholar 

  17. Musawwir A, Farhat A, Khera RA, Ayub AR, Iqbal J (2021) Theoretical and computational study on electronic effect caused by electron withdrawing/electron-donating groups upon the coumarin thiourea derivatives. Comput Theor Chem 1201:113271. https://doi.org/10.1016/j.comptc.2021.113271

    Article  CAS  Google Scholar 

  18. Moog RS, Kim DD, Oberle JJ, Ostrowski SG (2004) Solvent effects on electronic transitions of highly dipolar dyes: A comparison of three approaches. J Phys Chem A 108:9294–9301. https://doi.org/10.1021/jp0486088

    Article  CAS  Google Scholar 

  19. Kaufman JJ, Predney R (1972) Extension of indo formalism to d orbitals and parameters for second-row atoms. Int J Quantum Chem 6:231–242. https://doi.org/10.1002/qua.560060625

    Article  Google Scholar 

  20. Egan D, O’kennedy R, Moran E, Cox D, Prosser E, Thornes RD (1990) The pharmacology, metabolism, analysis, and applications of compounds coumarin and coumarin related. Drug Metab. Rev 22(5):503–529. https://doi.org/10.3109/03602539008991449

    Article  CAS  PubMed  Google Scholar 

  21. Cave RJ, Castner EW Jr (2002) Time-dependent density functional theory investigation of the ground and excited states of coumarins 102, 152, 153, and 343. J Phys Chem A 106:12117–12123. https://doi.org/10.1021/jp026718d

    Article  CAS  Google Scholar 

  22. Warde U, Sekar N (2017) Solvatochromic benzo[h] coumarins: Synthesis, solvatochromism, NLO and DFT study. Opt Mater 72:0925–3467. https://doi.org/10.1016/j.optmat.2017.06.027

    Article  CAS  Google Scholar 

  23. Giri R, Payal R (2023) Insights into the electronic properties of coumarins: A comparative study. Phys Chem Res 11(2):267–286. https://doi.org/10.22036/pcr.2022.329782.2031

    Article  CAS  Google Scholar 

  24. Maridevarmath CV, Naik L, Malimath GH (2019) Dielectric, photophysical, solvatochromic, and DFT studies on laser dye coumarin 334. Braz J Phys 49:151–160. https://doi.org/10.1007/s13538-018-00628-3

    Article  CAS  Google Scholar 

  25. Maridevarmath CV, Naik L, Negalurmath VS, Basanagouda M, Malimath GH (2019) Synthesis, photophysical, DFT and solvent effect studies on biologically active benzofuran derivative: (5-methyl-benzofuran-3-yl)-acetic acid hydrazide. Chem Data Collect 21:100221. https://doi.org/10.1016/j.cdc.2019.100221

    Article  CAS  Google Scholar 

  26. El Guesmi N (2023) Solvent effect on the photophysical properties of terpyridine incorporating pyrene moiety: Estimation of dipole moments by solvatochromic shift methods. J Fluoresc. https://doi.org/10.1007/s10895-023-03210-6

    Article  PubMed  Google Scholar 

  27. Lindic MM, Oberkirch TA, Tatchen J, Schmitt M (2021) The excited state effective dipole moment of 2,3-benzofuran from thermochromic shifts in absorption and emission spectra. J Photochem Photobiol A Chem 419:113476. https://doi.org/10.1016/j.molstruc.2021.131413

    Article  CAS  Google Scholar 

  28. Gawad SAA, Sakr MA (2022) Spectroscopic investigation, DFT and TD-DFT calculations of 7-(Diethylamino) coumarin (C466). J Mol Struct 1248:131413. https://doi.org/10.1016/j.jphotochem.2021.113476

    Article  CAS  Google Scholar 

  29. Khalid M, Lodhi HM, Khan MU, Imran M (2021) Structural parameter-modulated nonlinear optical amplitude of acceptor–p–D–p–donor-configured pyrene derivatives: a DFT approach. RSC Adv 11:14237–14250. https://doi.org/10.1039/d1ra00876e

    Article  CAS  Google Scholar 

  30. Wan Y, Yuan**g Cui Yu, Yang GQ (2018) Dye confined in metal-organic framework for two-photon fluorescent temperature sensing. Micropor Mesopor Mat 268:202–206. https://doi.org/10.1016/j.micromeso.2018.04.032

    Article  CAS  Google Scholar 

  31. Childs RN, Long CA, Greenwood JR (2000) Review of temperature measurement P. Rev Sci Instrum 71:2959. https://doi.org/10.1063/1.1305516

    Article  CAS  Google Scholar 

  32. Liang R, Tian R, Shi W, Liu Z, Yan D, Wei M, Evans DG, Duan X (2013) A temperature sensor based on CdTe quantum dots–layered double hydroxide ultrathin films via layer-by-layer assembly. Chem Commun 49:969. https://doi.org/10.1039/c2cc37553b

    Article  CAS  Google Scholar 

  33. Yan D, Jun Lu, Ma J, Wei M, Evans DG, Duan X (2011) Reversibly thermochromic, fluorescent ultrathin films with a supramolecular architecture. Angew Chem Int Ed 50:720–723. https://doi.org/10.1002/anie.201003015

    Article  CAS  Google Scholar 

  34. Moll F, Lippert E (1954) Dipolmoment und Elektronenstruktur von innermolekular-ionoiden aromatischen Nitroverbindungen in verdünnter benzolischer Lösung. Wiley online library 58:853. https://doi.org/10.1002/bbpc.19540581007

    Article  CAS  Google Scholar 

  35. Bakhshiev NG (1964) Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in 2-component solutions. 7. Theory (general case for isotopic solution). Opt Spektrosk 16:821–832

    CAS  Google Scholar 

  36. Kawaski A (1966) Zur Iösungsmittelabhängigkeit der Wellenzahl von Elecktronenbanden lumineszierender Moleküle and über die Bestimmung der elektrischen Dipolomente im Anregungszustand. Acta Phys Polon 29:507–518

    Google Scholar 

  37. Chamma A, Viallet P, Hebd CR (1970) Determination of the dipole moment of a molecule in a singlet excited state: application to indole, benzimidazole, and indazole. Seances Acad Sci 270:1901–1904

    CAS  Google Scholar 

  38. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry. In: John Wiley & Sons (ed.) 2nd edn VCH effects in organic chemistry

  39. Nesaragi AR, Kamble RR, Bayannavar PK, Metre TV, Kariduraganavar MY, Margankop SB, Joshi SD, Kumbar VM (2021) Microwave facilitated one-pot three component synthesis of coumarin-benzoxazole clubbed 1,2,3- triazoles: Antimicrobial evaluation, molecular docking and in silico ADME studies. Synth Commun 51:3460–3472. https://doi.org/10.1080/00397911.2021.1980806

    Article  CAS  Google Scholar 

  40. Mulla BBA, Nesaragi AR, Mussuvir Pasha KM, Pujar MS, Kamble RR, Sidarai AH (2023) Experimental and theoretical spectroscopic investigation on coumarin based derivatives for non-linear optoelectronics application. J Fluoresc 33:61–175. https://doi.org/10.1007/s10895-022-03046-6

    Article  CAS  Google Scholar 

  41. Lohani A, Durgapal S, Morganti P (2023) Quantum dots: an emerging implication of nanotechnology in cancer diagnosis and therapy. Quantum Mater Devices Appl 243–262. https://doi.org/10.1016/B978-0-12-820566-2.00008-9

  42. Ravi M, Soujanya T, Samanta A, Radhakrishna TP (1995) excited-state dipole moments of some coumarin dyes from a solvatochromic method using the solvent polarity parameter, ETN. J Chem Soc Faraday Trans 91(17):2739–2742. https://doi.org/10.1039/FT9959102739

    Article  Google Scholar 

  43. Naik L, Maridevarmath CV, Khazi IA, Malimath GH (2018) Photophysical and computational studies on optoelectronically active thiophene substituted 1,3,4-oxadiazole derivatives. J Photochem 368:200–209. https://doi.org/10.1016/j.jphotochem.2018.09.03

    Article  Google Scholar 

  44. Melavanki R, Muddapur GV, Srinivasa HT, Honnanagoudar SS, Patil NR (2021) Solvation, rotational dynamics, photophysical properties study of aromatic asymmetric di-ketones: An experimental and theoretical approach. J Mol Liq 337:116456. https://doi.org/10.1016/j.molliq.2021.116456

    Article  CAS  Google Scholar 

  45. Ans M, Iqbal J, Eliasson B, Ayub (2019) K. Opto-electronic properties of non-fullerene fused-undecacyclic electron acceptors for organic solar cells. Comput Mater Sci 159:150–159. https://doi.org/10.1016/j.commatsci.2018.12.009

  46. Ans M, Paramasivam M, Ayub K, Ludwig R, Zahid M, **ao X, Iqbal J (2020) Designing alkoxy-induced based high performance near infrared sensitive small molecule acceptors for organic solar cells. J Mol Liq 305:112829. https://doi.org/10.1016/j.molliq.2020.112829

    Article  CAS  Google Scholar 

  47. Ans M, Ayub K, Muhammad S, Iqbal J (2019) Development of fullerene free acceptors molecules for organic solar cells: A step way forward toward efficient organic solar cells. Comput Theor Chem 1161:26–38. https://doi.org/10.1016/j.comptc.2019.06.003

    Article  CAS  Google Scholar 

  48. Patil MK, Kotresh MG, Inamdar SR (2019) A combined solvatochromic shift and TDDFT study probing solute-solvent interactions of blue fluorescent Alexa Fluor 350 dye: Evaluation of ground and excited-state dipole moments. Spectrochim Acta A Mol Biomol Spectrosc 215:142–152. https://doi.org/10.1016/j.saa.2019.02.0221386

    Article  CAS  PubMed  Google Scholar 

  49. Ans M, Manzoor F, Ayub K, Nawa F, Iqbal J (2019) Designing dithienothiophene (DTT)-based donor materials with efficient photovoltaic parameters for organic solar cells. J Mol Model 25:222. https://doi.org/10.1007/s00894-019-4108-2

    Article  CAS  PubMed  Google Scholar 

  50. Ans M, Ayub K, **ao X, Iqbal J (2020) Tuning opto-electronic properties of alkoxy-induced based electron acceptors in infrared region for high performance organic solar cells. J Mol Liq 298:111963. https://doi.org/10.1016/j.molliq.2019.111963

    Article  CAS  Google Scholar 

  51. Ans M, Iqbal J, Bhattia IA, Ayub K (2019) Designing dithienonaphthalene based acceptor materials with promising photovoltaic parameters for organic solar cells. RSC Adv 9:34496. https://doi.org/10.1039/c9ra06345e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Joshi S (2021) Synthesis, solvatochromism and electric dipole moment study of coumarin-fused quinoline: experimental and quantum chemical computational investigations. Eur Phys J D 75:153. https://doi.org/10.1140/epjd/s10053-021-00169-6

    Article  CAS  Google Scholar 

  53. Khan SA, Asiri AM, Al-Thaqafy SH, Faidallah HM, El-Daly SA (2014) Synthesis, characterization and spectroscopic behaviour of novel 2-oxo-1,4- disubstituted-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile dyes. Spectrochim Acta A Mol Biomol Spectrosc 133:141–148. https://doi.org/10.1016/j.saa.2014.05.013

    Article  CAS  PubMed  Google Scholar 

  54. Sworakowski J (2018) How accurate are energies of HOMO and LUMO levels in small-molecule organic semiconductors determined from cyclic voltammetry or optical spectrosco. Synth Met 235:125–130. https://doi.org/10.1016/j.synthmet.2017.11.013

    Article  CAS  Google Scholar 

  55. Leonat L, Sbarcea G, Branzoi IV (2013) Cyclic voltammetry for energy levels estimation of organic materials. UPB Sci Bull Ser B 75(3):1454–2331

    Google Scholar 

  56. Akshaya KB, Anitha Varghese YN, Sudhakar PL, Lobo LG (2017) Study on photophysical properties of N-arylphthalamic acid derivative containing 1, 2, 4-triazole scaffold. J Fluoresc 27:1909–1992. https://doi.org/10.1007/s10895-017-2129-8

    Article  CAS  PubMed  Google Scholar 

  57. Nadgir A, Sidarai AH (2021) Photophysical investigation of a benzimidazole derivative and its applications in selective detection of Fe3+, thermosensing and logic gates. J Fluoresc 31:1503–1512. https://doi.org/10.1007/s10895-021-02790-5

    Article  CAS  PubMed  Google Scholar 

  58. Zhu C, Long Z, Wang QI, Qiu J, Zhou J, Zhou D, Wu H, Zhu R (2019) Insights into anti-thermal quenching of photoluminescence from SrCaGa4O8 based on defect state and application in temperature sensing. J Lumin 208:284–289. https://doi.org/10.1016/j.jlumin.2018.12.063

    Article  CAS  Google Scholar 

  59. Zhang Y, Guo X, Li G, Zhang G (2019) Photoluminescent Ag nanoclusters for reversible temperature and pH nanosenors in aqueous solution. Anal Bioanal Chem 411:1117–1125. https://doi.org/10.1007/s00216-018-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors gratefully acknowledge the financial support from the NFPwD, National Fellowship for Person with Disabilities, Department of Empowerment of Person with Disabilities, (candidate ID – NFPWD-2021-22-KAR-10224 Dated:23/11/2022). The authors also express their gratitude to the authorities of USIC, KUD, for providing the instrumental resources utilized in this research endeavour.

Author information

Authors and Affiliations

Authors

Contributions

The study's conceptions and design were a collaborative effort by all the authors. Bi Bi Ayisha Mulla performed the sample preparation, data collection, and formal analysis, while Dr. Aravind R Nesargi and Prof. Ravindra R Kamble synthesized the materials. Bi Bi Ayisha Mulla also wrote the first draft of the manuscript, Dr. Mussuvir Pasha K M handled the computational work. Prof. Ashok H Sidarai oversaw the editing and review of the draft. All authors have read and given their approval for the final manuscript.

Corresponding author

Correspondence to Ashok H. Sidarai.

Ethics declarations

Ethical Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflict of Interest

The authors declare they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The fluorescence quantum yield for FBTC was calculated.

• Bathochromic shifts were observed, attributed to the π-π* transition.

• FBTC is more polar in the excited state than the ground state.

• Experimental and theoretical HOMO LUMO energy values are close to each other.

• FBTC exhibited a remarkable relative sensitivity of about 1.35% ℃−1.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulla, B.B.A., Nesaragi, A.R., M, M.P.K. et al. Exploration of Coumarin Derivative: Experimental and Computational Modeling for Dipole Moment Estimation and Thermal Sensing Application. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03364-3

Keywords

Navigation