Log in

A ThT Derivative as Zn2+ Sensor Based on DNA G-quadruplex

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this report, we developed a sensing strategy based on ThT-E (a ThT derivative) and DNA G-quadruplex for the label-free detection of Zn2+. In the absence of Zn2+, there was a fluorescence enhancement of ThT-E by interaction with human telomere sequence. On the addition of Zn2+, Zn2+ induced a more compact antiparallel G-quadruplex to release ThT-E, resulting in fluorescence quenching. The detection limit was 0.6996 μM, and the fluorescence intensity showed a good linear relationship with the concentration of Zn2+ in the range of 0-10 μM. This sensing strategy which only needs to mix two kinds of materials has the characteristics of label-feel, simple operation, short response time, economical and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sandstead HH, Frederickson CJ, Penland JG (2000) History of zinc as related to brain function. Trace Microprobe Tech 18(4):517–521. https://doi.org/10.1093/jn/130.2.496S

    Article  CAS  Google Scholar 

  2. Hung HC, Chang GG (2010) Differentiation of the slow-binding mechanism for magnesium ion activation and zinc ion inhibition of human placental alkaline phosphatase. Protein Sci 10(1):34–45. https://doi.org/10.1110/ps.35201

    Article  Google Scholar 

  3. Erl W, Weber C, Hansson GK (2000) Pyrrolidine dithiocarbamate-induced apoptosis depends on cell type, density, and the presence of Cu2+ and Zn2+ Am J Physiol Cell Physiol 278(6):C1116–C1125. https://doi.org/10.1152/ajpcell.2000.278.6.C1116

    Article  CAS  PubMed  Google Scholar 

  4. Kocaturk PA, Siklar Z, Kavas GO et al (2002) Zinc treatment affects superoxide dismutase activity in growth retardation. Biol Trace Elem Res 90(1–3):39–46. https://doi.org/10.1385/BTER:90:1-3:39

    Article  CAS  PubMed  Google Scholar 

  5. Wessels I, Rolles B, Slusarenko AJ et al (2022) Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr 127(2):214–232. https://doi.org/10.1017/S0007114521000738

    Article  CAS  PubMed  Google Scholar 

  6. Varela P, Marcos A, Navarro MP (1992) Zinc status in anorexia-nervosa. Ann Nutr Metab 36(4):197–202. https://doi.org/10.1159/000177718

    Article  CAS  PubMed  Google Scholar 

  7. Sun WX, Yang JX, Wang WN et al (2018) The beneficial effects of Zn on Akt-mediated insulin and cell survival signaling pathways in diabetes. J Trace Elem Med Biol 46:117–127. https://doi.org/10.1016/j.jtemb.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  8. Chen WR, He ZL, Yang XE et al (2009) Zinc efficiency is correlated with root morphology, ultrastructure, and antioxidative enzymes in rice. J Plant Nutr 32(2):287–305. https://doi.org/10.1080/01904160802608627

    Article  CAS  Google Scholar 

  9. Liang J, Karamanos RE, Stewart JWB (1991) Plant availability of Zn fractions in Saskatchewan soils. Can J Soil Sci 71(4):507–517. https://doi.org/10.4141/cjss91-049

    Article  CAS  Google Scholar 

  10. Karadjova I, Izgi B, Gucer S (2002) Fractionation and speciation of Cu, Zn and Fe in wine samples by atomic absorption spectrometry. Spectrochim Acta Part B At Spectrosc 57(3):581–590. https://doi.org/10.1016/S0584-8547(01)00386-X

    Article  Google Scholar 

  11. Nomura CS, Silva CS, Nogueira ARA et al (2005) Bovine liver sample preparation and micro-homogeneity study for Cu and Zn determination by soild sampling electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy 60(5):673–680. https://doi.org/10.1016/j.sab.2005.02.021

    Article  CAS  Google Scholar 

  12. Levine KE, Ross GT, Fernando RA et al (2004) Trace element content of senna study material and selected senna-based dietary supplements as determined by inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry. Commun Soil Sci Plant Anal 35(5–6):835–851. https://doi.org/10.1081/CSS-120030361

    Article  CAS  Google Scholar 

  13. Zhou LY, **n GS, Pu XY (2012) Determination of microelements from different types of grass in the habitat of Przewalski’s Gazelle by sealed Microwave Digestion ICP-AES. J 32(4):1103–1105. https://doi.org/10.3964/j.issn.1000-0593(2012)04-1103-03

  14. Wang HB, Tao BB, Wu NN et al (2022) Glutathione-stabilized copper nanoclusters mediated-inner filter effect for sensitive and selective determination of p-nitrophenol and alkaline phosphatase activity. Spectrochim Acta A Mol Biomol Spectrosc 271:120948. https://doi.org/10.1016/j.saa.2022.120948

    Article  CAS  PubMed  Google Scholar 

  15. Wang HB, Mao AL, Tao BB et al (2021) L-Histidine-DNA interaction: a strategy for the improvement of the fluorescence signal of poly(adenine) DNA-templated gold nanoclusters. Microchim Acta 188(6):198. https://doi.org/10.1007/s00604-021-04853-7

    Article  CAS  Google Scholar 

  16. Wang HB, Tao BB, Mao AL et al (2021) Self-assembled copper nanoclusters structure-dependent fluorescent enhancement for sensitive determination of tetracyclines by the restriction intramolecular motion. Sens Actuators B Chem 348:130729. https://doi.org/10.1016/j.snb.2021.130729

    Article  CAS  Google Scholar 

  17. Burge S, Parkinson GN, Hazel P et al (2006) Quadruplex DNA: Sequence, topology and structure. Nucleic Acids Res 34(19):5402–5415. https://doi.org/10.1093/nar/gkl655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simonsson T (2001) G-quadruplex DNA structures–variations on a theme. Biol Chem 382(4):621–628. https://doi.org/10.1515/BC.2001.073

    Article  CAS  PubMed  Google Scholar 

  19. Kong DM, Ma YE, Guo JH et al (2009) Fluorescent sensor for monitoring structural changes of G-quadruplexes and detection of potassium ion. Anal Chem 81(7):2678–2684. https://doi.org/10.1021/ac802558f

    Article  CAS  PubMed  Google Scholar 

  20. Sun HX, Yu LJ, Chen HB et al (2015) A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye. Talanta 136:210–214. https://doi.org/10.1016/j.talanta.2015.01.027

    Article  CAS  PubMed  Google Scholar 

  21. Xu LJ, Chen Y, Zhang RH et al (2017) A highly sensitive turn-on fluorescent sensor for Ba2+ based on G-quadruplexes. J Fluoresc 27(2):569–574. https://doi.org/10.1007/s10895-016-1984-z

    Article  CAS  PubMed  Google Scholar 

  22. Ge J, Li XP, Jiang JH et al (2014) A highly sensitive label-free sensor for Mercury ion (Hg2+) by inhibiting thioflavin T as DNA G-quadruplexes fluorescent inducer. Talanta 122:85–90. https://doi.org/10.1016/j.talanta.2014.01.033

    Article  CAS  PubMed  Google Scholar 

  23. Ai J, Ga L, Yun GH (2016) Highly selective detection of mercury (II) using a G-rich oligonucleotide-based fluorescence quenching method. J Iran Chem Soc 13(6):991–997. https://doi.org/10.1007/s13738-016-0812-3

    Article  CAS  Google Scholar 

  24. Yang XL, Wei W, Jiang JH et al (2016) Conformational switch of G-quadruplex as a label-free platform for fluorescence detection of Ag+ and biothiols. Anal Methods 8(2):311–315. https://doi.org/10.1039/c5ay02632f

    Article  CAS  Google Scholar 

  25. Zhang K, Wang K, Zhu X et al (2015) Sensitive and selective amplified detection of silver ion based on NEase-aided target recycling. RSC Adv 5(108):89037–89041. https://doi.org/10.1039/c5ra12544h

    Article  Google Scholar 

  26. Wei C, Qian T, Li C (2008) Structural transition from the random coil to quadruplex of AG3(T2AG3)3 induced by Zn2+ Biophys Chem 132(2–3):110–113. https://doi.org/10.1016/j.bpc.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  27. Guo YH, Sun Y, Shen XQ et al (2015) Quantification of Zn(II) using a label-free sensor based on graphene oxide and G-qurdruplex. Anal Methods 7(22):9615–9618. https://doi.org/10.1039/c5ay01840d

    Article  CAS  Google Scholar 

  28. Guo YH, Sun Y, Shen XQ et al (2015) Label-free Detection of Zn2+ Based on G-quadruplex. Anal Sci 31(10):1041–1045. https://doi.org/10.2116/analsci.31.1041

    Article  CAS  PubMed  Google Scholar 

  29. Guan AJ, Zhang XF, Sun X et al (2018) Ethyl-substitutive Thioflavin T as a highly-specific fluorescence probe for detecting G-quadruplex structure. Sci Rep 8(1):2666. https://doi.org/10.1038/s41598-018-20960-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lakowicz J (2006) Quenching of fluorescence. In: Principles of fluorescence spectroscopy, 3rd edn. Springer, New York, pp 278–287

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 21807034, 82270303 ) and Natural Science Foundation of Hebei Province (Grant Number B2020209079).

Funding

This work was supported by the National Natural Science Foundation of China (Grant Number 21807034, 82270303) and Natural Science Foundation of Hebei Province (Grant Number B2020209079).

Author information

Authors and Affiliations

Authors

Contributions

**nyu Yuan, **ufeng Zhang, Lei Shi contributed to the conception of the study; **nyu Yuan, Buyue Zhang, ****ng He, **aoying Ma performed the experiment; **nyu Yuan, **ufeng Zhang, Lei Shi, **shan Hu contributed significantly to analysis and manuscript preparation; **nyu Yuan, **ufeng Zhang, Lei Shi performed the data analyses and wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to **ufeng Zhang.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Zhang, X., Hu, J. et al. A ThT Derivative as Zn2+ Sensor Based on DNA G-quadruplex. J Fluoresc 34, 353–358 (2024). https://doi.org/10.1007/s10895-023-03278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03278-0

Keywords

Navigation