Log in

Fluorescence Sensing of pH and p-Nitrophenol Using an AIEE Active Pyridoxal Derived Schiff Base

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

An easy-to-prepare aggregation-induced emission enhancement (AIEE) active Schiff base NPY was synthesized by condensing vitamin B6 cofactor pyridoxal with 3-hydroxy-2-naphthoic hydrazide, and employed for the fluorescent sensing of pH and p-nitrophenol (p-NP). The AIEE phenomenon of NPY was investigated in mixed DMSO/H2O medium. The weakly yellow-fluorescent NPY (λem = 535 nm) in pure DMSO turned to a bright cyan-fluorescent NPY (λem = 490 nm) upon addition of poor solvent water. The DLS and SEM analyses supported the self-aggregation of NPY that restricted the intramolecular rotation and activated the excited state intramolecular proton transfer (ESIPT) process. The AIEE luminogen (AIEEgen) NPY containing 90% of water fraction (fwater) was employed for the fluorescent sensing of pH. AIEEgen NPY displays three distinct fluorescent pH windows: non-fluorescent below pH 3.0 and above pH 10.0, cyan fluorescent between pH 3.0 to 8.0, and yellow fluorescent between pH 8.0 to 10.0. AIEEgen NPY was also applied for the detection of nitroaromatics in HEPES buffer (10% DMSO, 10 mM, pH 7.0). The addition of p-NP selectively quenched the fluorescent intensity of AIEEgen NPY with an estimated detection limit of 1.73 µM. The analytical utility of AIEEgen NPY was examined by quantifying p-NP in different real water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated during this study are included in this published article.

References

  1. Ueno T, Nagano T (2011) Fluorescent probes for sensing and imaging. Nat Methods 8(8):642–645

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Bai Y, Han Z, He W, Guo Z (2015) Photoluminescence imaging of zn 2 + in living systems. Chem Soc Rev 44(14):4517–4546

    Article  CAS  PubMed  Google Scholar 

  3. Zhu X, Wang J-X, Niu L-Y, Yang Q-Z (2019) Aggregation-Induced Emission materials with narrowed Emission Band by Light-Harvesting Strategy: fluorescence and chemiluminescence imaging. Chem Mater 31(9):3573–3581. https://doi.org/10.1021/acs.chemmater.9b01338

    Article  CAS  Google Scholar 

  4. Bünau G, Birks JB (1970) Photophysics of Aromatic Molecules. Wiley-Interscience, London 1970. 704 Seiten. Preis: 210s. Ber. Bunsenges. Phys. Chem., 74, 1294–1295

  5. Zhang K, Liu J, Zhang Y, Fan J, Wang C-K, Lin L (2019) Theoretical study of the mechanism of aggregation-caused quenching in near-infrared thermally activated delayed fluorescence molecules: hydrogen-bond effect. J Phys Chem C 123(40):24705–24713

    Article  CAS  Google Scholar 

  6. Feng H-T, Liu C, Li Q, Zhang H, Lam JWY, Tang BZ (2019) Structure, assembly, and function of (latent)-chiral AIEgens. ACS Mater Lett 1(1):192–202

    Article  CAS  Google Scholar 

  7. Vendrell M, Zhai D, Er JC, Chang Y-T (2012) Combinatorial strategies in fluorescent Probe Development. Chem Rev 112(8):4391–4420. https://doi.org/10.1021/cr200355j

    Article  CAS  PubMed  Google Scholar 

  8. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40(11):5361–5388

    Article  CAS  PubMed  Google Scholar 

  9. Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications.Chemical Communications(29),4332–4353

  10. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26(31):5429–5479

    Article  CAS  PubMed  Google Scholar 

  11. Chen J, Law CCW, Lam JWY, Dong Y, Lo SMF, Williams ID et al (2003) Synthesis, Light Emission, Nanoaggregation, and restricted intramolecular rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chem Mater 15(7):1535–1546. https://doi.org/10.1021/cm021715z

    Article  CAS  Google Scholar 

  12. Shustova NB, McCarthy BD, Dincă M (2011) Turn-On fluorescence in tetraphenylethylene-based Metal–Organic Frameworks: an alternative to Aggregation-Induced Emission. J Am Chem Soc 133(50):20126–20129. https://doi.org/10.1021/ja209327q

    Article  CAS  PubMed  Google Scholar 

  13. He Z, Ke C, Tang BZ (2018) Journey of aggregation-induced emission research. Acs Omega 3(3):3267–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao Z, He B, Tang BZ (2015) Aggregation-induced emission of siloles. Chem Sci 6(10):5347–5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhardwaj V, Thangaraj A, Varddhan S, Kumar SK, Crisponi G, Sahoo SK (2020) An aggregation-induced emission active vitamin B6 cofactor derivative: application in pH sensing and detection of latent fingerprints. Photochem Photobiol Sci 19(10):1402–1409

    Article  CAS  PubMed  Google Scholar 

  16. Wang D, Tang BZ (2019) Aggregation-Induced Emission Luminogens for activity-based sensing. Acc Chem Res 52(9):2559–2570. https://doi.org/10.1021/acs.accounts.9b00305

    Article  CAS  PubMed  Google Scholar 

  17. Bamnavat K, Bhardwaj V, Anand T, Kumar SKA, Sahoo SK (2021) Pyridoxal derived AIEgen as a fluorescent pH sensor. Dyes Pigm 184:108844

    Article  CAS  Google Scholar 

  18. Bhardwaj V, Kumar SKA, Sahoo SK (2022) Fluorescent sensing (Cu2 + and pH) and visualization of latent fingerprints using an AIE-active naphthaldehyde-pyridoxal conjugated Schiff base. Microchem J 178:107404

    Article  CAS  Google Scholar 

  19. Saini AK, Sahoo SK (2022) Fluorescent pH sensing and MnO2 nanosphere directed turn-on sensing of glutathione using pyridoxal 5′-phosphate modified polydopamine nanoparticles. Inorg Chem Commun 142:109677

    Article  CAS  Google Scholar 

  20. Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110(5):2709–2728. https://doi.org/10.1021/cr900249z

    Article  CAS  PubMed  Google Scholar 

  21. Yang Z, Qin W, Lam JWY, Chen S, Sung HHY, Williams ID et al (2013) Fluorescent pH sensor constructed from a heteroatom-containing luminogen with tunable AIE and ICT characteristics. [10.1039/C3SC50648G]. Chem Sci 4(9):3725–3730. https://doi.org/10.1039/C3SC50648G

    Article  CAS  Google Scholar 

  22. Sahoo SK (2021) Chromo-fluorogenic sensing using vitamin B 6 cofactors and their derivatives: a review. New J Chem 45(20):8874–8897

    Article  CAS  Google Scholar 

  23. Wu J, Wang Q, Umar A, Sun S, Huang L, Wang J et al (2014) Highly sensitive p-nitrophenol chemical sensor based on crystalline α-MnO 2 nanotubes. New J Chem 38(9):4420–4426

    Article  CAS  Google Scholar 

  24. Geng S, Lin SM, Liu SG, Li NB, Luo HQ (2016) A new fluorescent sensor for detecting p-nitrophenol based on β-cyclodextrin-capped ZnO quantum dots. RSC Adv 6(89):86061–86067

    Article  CAS  Google Scholar 

  25. Mohanta D, Mahanta A, Mishra SR, Jasimuddin S, Ahmaruzzaman M (2021) Novel SnO2@ ZIF-8/gC3N4 nanohybrids for excellent electrochemical performance towards sensing of p-nitrophenol. Environ Res 197:111077

    Article  CAS  PubMed  Google Scholar 

  26. He Q, Tian Y, Wu Y, Liu J, Li G, Deng P et al (2019) Facile and ultrasensitive determination of 4-nitrophenol based on acetylene black paste and graphene hybrid electrode. Nanomaterials 9(3):429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang W, Chang J, Chen J, Xu F, Wang F, Jiang K et al (2012) Graphene–Au composite sensor for electrochemical detection of para-nitrophenol. Res Chem Intermed 38(9):2443–2455. https://doi.org/10.1007/s11164-012-0560-7

    Article  CAS  Google Scholar 

  28. Rahman MM, Marwani HM, Algethami FK, Asiri AM, Hameed SA, Alhogbi B (2017) Ultra-sensitive p-nitrophenol sensing performances based on various Ag2O conjugated carbon material composites. Environ Nanatechnol Monit Manage 8:73–82

    Google Scholar 

  29. Wei Y, Kong L-T, Yang R, Wang L, Liu J-H, Huang X-J (2011) Single-walled carbon nanotube/pyrenecyclodextrin nanohybrids for ultrahighly sensitive and selective detection of p-nitrophenol. Langmuir 27(16):10295–10301

    Article  CAS  PubMed  Google Scholar 

  30. Liu Z, Du J, Qiu C, Huang L, Ma H, Shen D et al (2009) Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem Commun 11(7):1365–1368

    Article  CAS  Google Scholar 

  31. Peyghan AA, Noei M, Yourdkhani S (2013) Al-doped graphene-like BN nanosheet as a sensor for para-nitrophenol: DFT study. Superlattices Microstruct 59:115–122

    Article  CAS  Google Scholar 

  32. Anand T, Kumar ASK, Sahoo SK (2018) A novel Schiff base derivative of pyridoxal for the optical sensing of Zn2 + and cysteine. Photochem Photobiol Sci 17(4):414–422. https://doi.org/10.1039/c7pp00391a

    Article  CAS  PubMed  Google Scholar 

  33. Bhardwaj V, Patel DA, Majeed SA, Sahul Hameed AS, Aatif MA, Kumar ASK et al (2022) Probing Biothiols using a red-emitting Pyridoxal Derivative by adopting copper (II) Displacement Approach and Cell Imaging. Chem Biodivers 19(9):e202200425

    Article  CAS  PubMed  Google Scholar 

  34. Umare M, Patel DA, Bhardwaj V, Sk AK, Sahoo SK (2022) Pyridoxal Derived AIEgen for fluorescence turn-off sensing of Cu2 + and Fe2 + ions and fluorescence imaging of latent fingerprints.Journal of Fluorescence,1–11

  35. Kachwal V, Krishna ISV, Fageria L, Chaudhary J, Roy RK, Chowdhury R et al (2018) Exploring the hidden potential of a benzothiazole-based Schiff-base exhibiting AIE and ESIPT and its activity in pH sensing, intracellular imaging and ultrasensitive & selective detection of aluminium (Al 3+). Analyst 143(15):3741–3748

    Article  CAS  PubMed  Google Scholar 

  36. Kwocz A, Kochel A, Chudoba D, Filarowski A (2015) Tautomeric design of ortho-hydroxyheterocyclic Schiff bases. J Mol Struct 1080:52–56

    Article  CAS  Google Scholar 

  37. Zhang F, Zhang G, Yao H, Wang Y, Chu T, Yang Y (2017) A europium (III) based nano-flake MOF film for efficient fluorescent sensing of picric acid. Microchim Acta 184(4):1207–1213. https://doi.org/10.1007/s00604-017-2127-1

    Article  CAS  Google Scholar 

  38. Hussain S, Junaid M, Tahir Waseem H, Rauf M, Jabbar Shaikh W, A., Shahzad A, S (2022) Aggregation-Induced Emission of Quinoline based fluorescent and colorimetric sensors for Rapid Detection of Fe3 + and 4-Nitrophenol in Aqueous Medium. Spectrochim Acta Part A Mol Biomol Spectrosc 272:121021. https://doi.org/10.1016/j.saa.2022.121021

    Article  CAS  Google Scholar 

  39. Ueno T, Urano Y, Setsukinai K-i, Takakusa H, Kojima H, Kikuchi K et al (2004) Rational principles for modulating fluorescence properties of fluorescein. J Am Chem Soc 126(43):14079–14085

    Article  CAS  PubMed  Google Scholar 

  40. Frisch M, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09, revision D, vol 01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  41. Patel DA, Kumar SKA, Sahoo SK (2023) Aggregation-induced emission active salicylaldehyde hydrazone with multipurpose sensing applications. J Photochem Photobiol A 437:114465

    Article  CAS  Google Scholar 

  42. Chauhan C, Bhardwaj V, Sahoo SKJMJ (2021) Sequential detection of vitamin B6 cofactors and nitroaromatics by using albumin-stabilized fluorescent copper nanoclusters. 170,106778

  43. Patel R, Bothra S, Kumar R, Sahoo SK (2019) Selective turn-off sensing of picric acid and p-nitrophenol using fluorescent histidine. Nano-Structures & Nano-Objects 19:100345. https://doi.org/10.1016/j.nanoso.2019.100345

    Article  CAS  Google Scholar 

  44. Park JE, Anand T, Bharadwaj V, Sahoo SK, Choi H-J (2019) A novel fluorescent triazole trindane-coumarin receptor for the selective detection of nitroaromatics. J Photochem Photobiol A 383:111990. https://doi.org/10.1016/j.jphotochem.2019.111990

    Article  CAS  Google Scholar 

  45. Bhardwaj V, Anand T, Choi H-J, Sahoo SK (2019) Sensing of Zn (II) and nitroaromatics using salicyclaldehyde conjugated lysozyme-stabilized fluorescent gold nanoclusters. Microchem J 151:104227

    Article  CAS  Google Scholar 

  46. Upadhyay Y, Kumar R, Sahoo SK (2020) Develo** a cost-effective bioassay to detect alkaline phosphatase activity and generating white light emission from a single nano-assembly by conjugating vitamin B6 cofactors with lysozyme-stabilized fluorescent gold nanoclusters. ACS Sustain Chem Eng 8(10):4107–4113

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. The Investigation, Validation, Formal analysis, Data curation, Writing-original draft were performed by Dhvani A. Patel. Thangaraj Anand helps in Writing-original draft. Ashok Kumar SK helps in Formal analysis. The Conceptualization, Resources, Supervision, and Writing-review & editing were performed by Suban K Sahoo.

Corresponding author

Correspondence to Suban K. Sahoo.

Ethics declarations

Ethics Approval

Not applicable as the study does not include any use of animals and humans.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflicts of Interest/Competing Interests

Authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, D.A., Anand, T., SK, A.K. et al. Fluorescence Sensing of pH and p-Nitrophenol Using an AIEE Active Pyridoxal Derived Schiff Base. J Fluoresc 33, 1431–1441 (2023). https://doi.org/10.1007/s10895-023-03167-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03167-6

Keywords

Navigation