Log in

A Facile, Label-free and Versatile Fluorescence Sensing Nanoplatform Based on Titanium Carbide Nanosheets for the Detection of Various Targets

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The construction of a universal nanoplatform for sensitive detection of multiple targets of interest is of great importance in different research fields. Herein, by ingeniously integrating the target recognition sequences and G-rich sequences into a single-stranded multifunctional DNA probe and adopting Ti3C2 nanosheets as an efficient fluorescence quencher, a simple, low-cost and easy operation fluorescence sensing nanoplatform was proposed. Without an analytical target, the hydrogen bond and metal chelate interaction between the target recognition region of the DNA probe and Ti3C2 nanosheet induce the selective self-assembly of highly fluorescent thioflavin T (ThT)-intercalated DNA probe onto the surface of Ti3C2 nanosheets, resulting in dramatic decrease of fluorescence emitted by ThT-G-quadruplex. In the presence of a target, the target recognition region will selectively bind with the target and the constrained DNA probe is released from the Ti3C2 nanosheets surface, leading to enhanced fluorescence recovery of ThT-G-quadruplex. As a proof of concept, the sensitive and selective detection of p53 gene, Hg2+, and adenosine with the assistance of Ti3C2 nanosheets-based fluorescence sensing nanoplatform were successfully realized. Moreover, it is also applicable for the evaluation the level of these analytical targets in real samples. By simply switching the recognition sequences of DNA probe, the universal sensing strategy could also be applied for detecting many other types of targets. The simple and universal sensing nanoplatform is expected to promote wide applications in environment monitoring and bioanalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data sets supporting the results of this article are included within the article and its additional files.

References

  1. Zhao X, Chen L-J, Zhao K-C, Liu Y-S, Liu J-L, Yan X-P (2019) Autofluorescence-free chemo/biosensing in complex matrixes based on persistent luminescence nanoparticles. Trends Anal Chem 118:65–72. https://doi.org/10.1016/j.trac.2019.05.025

    Article  CAS  Google Scholar 

  2. Chen J, Meng H, Tian Y, Yang R, Du D, Li Z, Qu L, Lin Y (2019) Recent advances in functionalized MnO2 nanosheets for biosensing and biomedicine applications. Nanoscale Horiz 4(2):321–338. https://doi.org/10.1039/C8NH00274F

    Article  CAS  PubMed  Google Scholar 

  3. Shen Y, Wei Y, Zhu C, Cao J, Han D-M (2022) Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coord Chem Rev 458:214442. https://doi.org/10.1016/j.ccr.2022.214442

    Article  CAS  Google Scholar 

  4. Zou L, Shen R, Ling L, Li G (2018) Sensitive DNA detection by polymerase chain reaction with gold nanoparticles. Anal Chim Acta 1038:105–111. https://doi.org/10.1016/j.aca.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  5. Wang M, Zhou X, Wang S, **e X, Wang Y, Su X (2021) Fabrication of bioresource-derived porous carbon-supported iron as an efficient oxidase mimic for dual-channel biosensing. Anal Chem 93(6):3130–3137. https://doi.org/10.1021/acs.analchem.0c04386

    Article  CAS  PubMed  Google Scholar 

  6. Wang H-B, Li Y, Bai H-Y, Liu Y-M (2018) DNA-templated Au nanoclusters and MnO2 sheets: a label-free and universal fluorescence biosensing platform. Sens Actuators B 259:204–210. https://doi.org/10.1016/j.snb.2017.12.048

    Article  CAS  Google Scholar 

  7. Yan X, Song Y, Zhu C, Li H, Du D, Su X, Lin Y (2018) MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides. Anal Chem 90(4):2618–2624. https://doi.org/10.1021/acs.analchem.7b04193

    Article  CAS  PubMed  Google Scholar 

  8. Xu X, Cen Y, Xu G, Wei F, Shi M, Hu Q (2019) A ratiometric fluorescence probe based on carbon dots for discriminative and highly sensitive detection of acetylcholinesterase and butyrylcholinesterase in human whole blood. Biosens Bioelectron 131:232–236. https://doi.org/10.1016/j.bios.2019.02.031

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Liu X, Wang X, Wang Y, **ao Y, Zhuo Z, Li Y (2022) A versatile technique based on surface-enhanced Raman spectroscopy for label-free detection of amino acids and peptide formation in body fluids. Microchim Acta 189(2):1–8. https://doi.org/10.1007/s00604-022-05191-y

    Article  CAS  Google Scholar 

  10. Zhao X, Campbell S, Wallace GQ, Claing A, Bazuin CG, Masson J-F (2020) Branched Au nanoparticles on nanofibers for surface-enhanced Raman scattering sensing of intracellular pH and extracellular pH gradients. ACS Sens 5(7):2155–2167. https://doi.org/10.1021/acssensors.0c00784

    Article  CAS  PubMed  Google Scholar 

  11. Zhang G, Zhang L, Yu Y, Lin B, Wang Y, Guo M, Cao Y (2020) Dual-mode of electrochemical-colorimetric imprinted sensing strategy based on self-sacrifice beacon for diversified determination of cardiac troponin I in serum. Biosens Bioelectron 167:112502. https://doi.org/10.1016/j.bios.2020.112502

    Article  CAS  PubMed  Google Scholar 

  12. Shen C, Liu S, Li X, Yang M (2019) Electrochemical detection of circulating tumor cells based on DNA generated electrochemical current and rolling circle amplification. Anal Chem 91(18):11614–11619. https://doi.org/10.1021/acs.analchem.9b01897

    Article  CAS  PubMed  Google Scholar 

  13. Shen X, Xu W, Guo J, Ouyang J, Na N (2020) Chemiluminescence resonance energy transfer-based mesoporous silica nanosensors for the detection of miRNA. ACS Sens 5(9):2800–2805. https://doi.org/10.1021/acssensors.0c00747

    Article  CAS  PubMed  Google Scholar 

  14. Fan X, Wang S, Liu H, Li Z, Sun Q, Wang Y, Fan X (2022) A sensitive electrochemiluminescence biosensor for assay of cancer biomarker (MMP-2) based on NGQDs-Ru@ SiO2 luminophore. Talanta 236:122830. https://doi.org/10.1016/j.talanta.2021.122830

    Article  CAS  PubMed  Google Scholar 

  15. Cui H, Lu H, Yang J, Fu Y, Huang Y, Li L, Ding Y (2022) A significant fluorescent aptamer sensor based on carbon dots and graphene oxide for highly selective detection of progesterone. J Fluoresc. https://doi.org/10.1007/s10895-022-02896-4

    Article  PubMed  Google Scholar 

  16. Fang X, Zheng Y, Duan Y, Liu Y, Zhong W (2018) Recent advances in design of fluorescence-based assays for high-throughput screening. Anal Chem 91(1):482–504. https://doi.org/10.1021/acs.analchem.8b05303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang Z, Luo Z, Chen J, Xu Y, Duan Y (2018) A facile, label-free, and universal biosensor platform based on target-induced graphene oxide constrained DNA dissociation coupling with improved strand displacement amplification. ACS Sens 3(11):2423–2431. https://doi.org/10.1021/acssensors.8b00935

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Zhang S, Yu Y, Wang Y, Zhang L, Lin B, Guo M, Cao Y (2020) A novel universal nanoplatform for ratiometric fluorescence biosensing based on silver nanoclusters beacon. Chem Eng J 391:123526. https://doi.org/10.1016/j.cej.2019.123526

    Article  CAS  Google Scholar 

  19. Lou Y-F, Peng Y-B, Luo X, Yang Z, Wang R, Sun D, Li L, Tan Y, Huang J, Cui L (2019) A universal aptasensing platform based on cryonase-assisted signal amplification and graphene oxide induced quenching of the fluorescence of labeled nucleic acid probes: application to the detection of theophylline and ATP. Microchim Acta 186(8):1–9. https://doi.org/10.1007/s00604-019-3596-1

    Article  CAS  Google Scholar 

  20. Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H (2018) Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev 118(13):6409–6455. https://doi.org/10.1021/acs.chemrev.7b00727

    Article  CAS  PubMed  Google Scholar 

  21. Deng S, Sumant AV, Berry V (2018) Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22:14–35. https://doi.org/10.1016/j.nantod.2018.07.001

    Article  CAS  Google Scholar 

  22. Zhao B, Shen D, Zhang Z, Lu P, Hossain M, Li J, Li B, Duan X (2021) 2D Metallic Transition-Metal Dichalcogenides: Structures, Synthesis, Properties, and Applications. Adv Funct Mater 31(48):2105132. https://doi.org/10.1002/adfm.202105132

    Article  CAS  Google Scholar 

  23. Cao Y, Wu W, Wang S, Peng H, Hu X, Yu Y (2016) Monolayer g-C3N4 fluorescent sensor for sensitive and selective colorimetric detection of silver ion from aqueous samples. J Fluoresc 26(2):739–744. https://doi.org/10.1007/s10895-016-1764-9

    Article  CAS  PubMed  Google Scholar 

  24. Wu Y, Yuan W, Xu M, Bai S, Chen Y, Tang Z, Wang C, Yang Y, Zhang X, Yuan Y (2021) Two-dimensional black phosphorus: Properties, fabrication and application for flexible supercapacitors. Chem Eng J 412:128744. https://doi.org/10.1016/j.aca.2021.338480

    Article  CAS  Google Scholar 

  25. Ren B, Wang Y, Ou JZ (2020) Engineering two-dimensional metal oxides via surface functionalization for biological applications. J Mat Chem B 8(6):1108–1127. https://doi.org/10.1039/C9TB02423A

    Article  CAS  Google Scholar 

  26. Garg D, Rekhi H, Kaur H, Singh K, Malik AK (2022) A novel method for the synthesis of MOF-199 for sensing and photocatalytic applications. J Fluoresc. https://doi.org/10.1007/s10895-022-02902-9

    Article  PubMed  Google Scholar 

  27. Huang K, Li Z, Lin J, Han G, Huang P (2018) Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev 47(14):5109–5124. https://doi.org/10.1039/C7CS00838D

    Article  CAS  PubMed  Google Scholar 

  28. Fu Q, Zhu R, Song J, Yang H, Chen X (2019) Photoacoustic imaging: contrast agents and their biomedical applications. Adv Mater 31(6):1805875. https://doi.org/10.1002/adma.201805875

    CAS  Google Scholar 

  29. Liu C, Hao S, Chen X, Zong B, Mao S (2020) High anti-interference Ti3C2Tx MXene field-effect-transistor-based alkali indicator. ACS Appl Mater Interfaces 12(29):32970–32978. https://doi.org/10.1021/acsami.0c09921

    Article  CAS  PubMed  Google Scholar 

  30. Asen P, Esfandiar A, Mehdipour H (2021) Urchin-like hierarchical ruthenium cobalt oxide nanosheets on Ti3C2Tx MXene as binder free bi-functional electrode for overall water splitting and supercapacitors. Nanoscale 14(4):1347–1362. https://doi.org/10.1039/D1NR07145A

    Article  Google Scholar 

  31. Guo D, Li X, Jiao Y, Yan H, Wu A, Yang G, Wang Y, Tian C, Fu H (2022) A dual-active Co-CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting. J Nano Res 15(1):238–247. https://doi.org/10.1007/s12274-021-3465-1

    Article  CAS  Google Scholar 

  32. Zhu Y, Wang Z, Zhao R, Zhou Y, Feng L, Gai S, Yang P (2022) Pt Decorated Ti3C2Tx MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics. ACS Nano 16(2):3105–3118. https://doi.org/10.1021/acsnano.1c10732

    Article  CAS  PubMed  Google Scholar 

  33. Zhu X, Fan L, Wang S, Lei C, Huang Y, Nie Z, Yao S (2018) Phospholipid-tailored titanium carbide nanosheets as a novel fluorescent nanoprobe for activity assay and imaging of phospholipase D. Anal Chem 90(11):6742–6748. https://doi.org/10.1021/acs.analchem.8b00581

    Article  CAS  PubMed  Google Scholar 

  34. Peng X, Zhang Y, Lu D, Guo Y, Guo S (2019) Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sens Actuators B 286:222–229. https://doi.org/10.1016/j.snb.2019.01.158

    Article  CAS  Google Scholar 

  35. Zhang Q, Wang F, Zhang H, Zhang Y, Liu M, Liu Y (2018) Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal Chem 90(21):12737–12744. https://doi.org/10.1021/acs.analchem.8b03083

    Article  CAS  PubMed  Google Scholar 

  36. Wang S, Zeng P, Zhu X, Lei C, Huang Y, Nie Z (2020) Chimeric peptides self-assembling on titanium carbide MXenes as biosensing interfaces for activity assay of post-translational modification enzymes. Anal Chem 92(13):8819–8826. https://doi.org/10.1021/acs.analchem.0c00243

    Article  CAS  PubMed  Google Scholar 

  37. Zhu X, Zhang Y, Liu M, Liu Y (2021) 2D titanium carbide MXenes as emerging optical biosensing platforms. Biosens Bioelectron 171:112730. https://doi.org/10.1016/j.bios.2020.112730

    Article  CAS  PubMed  Google Scholar 

  38. Xuan J, Wang Z, Chen Y, Liang D, Cheng L, Yang X, Liu Z, Ma R, Sasaki T, Geng F (2016) Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew Chem Int Ed 128(47):14789–14794. https://doi.org/10.1002/ange.201606643

    Article  Google Scholar 

  39. Mohanty J, Barooah N, Dhamodharan V, Harikrishna S, Pradeepkumar P, Bhasikuttan AC (2013) Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J Am Chem Soc 135(1):367–376. https://doi.org/10.1021/ja309588h

    Article  CAS  PubMed  Google Scholar 

  40. Behn M, Schuermann M (1998) Sensitive detection of p53 gene mutations by a ‘mutant enriched’PCR-SSCP technique. Nucleic Acids Res 26(5):5065–5071. https://doi.org/10.1093/nar/26.5.1356

    Article  Google Scholar 

  41. Zhi L, Zhang S, Li M, Tu J, Lu X (2022) Achieving ultrasensitive point-of-care assay for mercury ions with a triple-mode strategy based on the mercury-triggered dual-enzyme mimetic activities of Au/WO3 hierarchical hollow nanoflowers. ACS Appl Mater Interfaces 14(7):9442–9453. https://doi.org/10.1007/s10895-022-02941-2

    Article  CAS  PubMed  Google Scholar 

  42. Zhao Y, Tan L, Gao X, Jie G, Huang T (2018) Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy. Biosens Bioelectron 110:239–245. https://doi.org/10.1016/j.bios.2018.03.069

    Article  CAS  PubMed  Google Scholar 

  43. Lu C, Liu Y, Ying Y, Liu J (2017) Comparison of MoS2, WS2, and graphene oxide for DNA adsorption and sensing. Langmuir 33(2):630–637. https://doi.org/10.1021/acs.langmuir.6b04502

    Article  CAS  PubMed  Google Scholar 

  44. Hosseini M, Mohammadi S, Borghei Y-S, Ganjali MR (2017) Detection of p53 gene mutation (single-base mismatch) using a fluorescent silver nanoclusters. J Fluoresc 27(4):1443–1448. https://doi.org/10.1007/s10895-017-2083-5

    Article  CAS  PubMed  Google Scholar 

  45. Chang Y, Zhang Z, Liu H, Wang N, Tang J (2016) Cobalt oxyhydroxide nanoflake based fluorescence sensing platform for label-free detection of DNA. Analyst 141(15):4719–4724. https://doi.org/10.1039/C6AN00745G

    Article  CAS  PubMed  Google Scholar 

  46. Li J, Du B, Li Y, Wang Y, Wu D, Wei Q (2018) A turn-on fluorescent sensor for highly sensitive mercury (II) detection based on a carbon dot-labeled oligodeoxyribonucleotide and MnO2 nanosheets. New J Chem 42(2):1228–1234. https://doi.org/10.1039/C7NJ04120A

    Article  CAS  Google Scholar 

  47. Fu B, Cao J, Jiang W, Wang L (2013) A novel enzyme-free and label-free fluorescence aptasensor for amplified detection of adenosine. Biosens Bioelectron 44:52–56. https://doi.org/10.1016/j.bios.2012.12.059

    Article  CAS  PubMed  Google Scholar 

  48. Lopez A, Liu J (2021) Nanomaterial and aptamer-based sensing: target binding versus target adsorption illustrated by the detection of adenosine and ATP on metal oxides and graphene oxide. Anal Chem 93(5):3018–3025. https://doi.org/10.1021/acs.analchem.0c05062

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Yu H, Zhao Q (2022) Aptamer fluorescence anisotropy assays for detection of aflatoxin B1 and adenosine triphosphate using antibody to amplify signal change. RSC Adv 12(12):7464–7468. https://doi.org/10.1039/D2RA00843B

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 22004039, 52070080, 21575043 and 21605052), the Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110291), Young Innovative Talents Project of Education Department of Guangdong Province (No. 2019KQNCX027), Guangzhou Science and Technology Plan Project (No. 202102020522) and the Opening Project of Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine (No. 2021002).

Author information

Authors and Affiliations

Authors

Contributions

Meishuang Liang: Investigation, Methodology, Data analysis and curation, Writing-original draft. Bixia Lin: Investigation, Data analysis and curation. Zhijiao Tang: Investigation, Data analysis and curation. Li Zhang: Writing—review & editing. Manli Guo: Resources, Funding acquisition. Yujuan Cao: Conceptualization, Project administration, Writing—review & editing, Funding acquisition, Supervision. Yumin Wang: Conceptualization, Project administration, Writing—review & editing, Funding acquisition, Supervision. Ying Yu: Resources, Writing—review & editing, Funding acquisition.

Corresponding authors

Correspondence to Yujuan Cao or Yumin Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors acknowledge participation in this manuscript.

Consent for Publication

All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1151 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Lin, B., Tang, Z. et al. A Facile, Label-free and Versatile Fluorescence Sensing Nanoplatform Based on Titanium Carbide Nanosheets for the Detection of Various Targets. J Fluoresc 32, 2189–2198 (2022). https://doi.org/10.1007/s10895-022-03012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03012-2

Keywords

Navigation