Log in

A Pyrene-Tetrazole Fused Fluorescent Probe for Effective Real Time Detection Towards Aluminium Ion

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We constructed a novel-binding site for metal ion detection using a fused tetrazole ring conjugated with aminopyrene (R). The designed structure of the molecule was successfully synthesized and determined the probe's selectivity by testing various metal ions and found that the probe effectively detects Al3+ ion visually. Checked the sensing ability of the probe with different approaches (fluorimetric and colorimetric), and the effectiveness is double confirmed. The added Al3+ ion to R procured a rapid change in color from yellowish orange to colorless. Under the UV lamp, a turn-on blue fluorescence was observed after adding aluminium ion, whereas the probe was non-fluorescent before detecting aluminium ion. The probable interface of the probe with aluminium ion has also been expected from HRMS spectral analysis results. The probe's utility in real-time monitoring of Al3+ ion in water is confirmed by a simple test kit prepared using filter paper. The kit showed a possible naked-eye detection with a notable color change, and when checked, the aluminium ion detected test kit under a UV lamp showed blue fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

All data available.

Code Availability

Not applicable.

References

  1. Anamika D, Atanu J, Nikhil G, Prasanta G, Susanta KK (2014) Rhodamine-based molecular clips for highly selective recognition of Al3+ ions: synthesis, crystal structure and spectroscopic properties. New J Chem 38:1627–1634

    Article  Google Scholar 

  2. Long F, **g CQ, Chao RL, Zheng YY (2019) A Schiff-base receptor based chromone derivate: Highly selective fluorescent and colorimetric probe for Al(III). Spectrochim Acta A Mol Biomol Spectrosc 218:342–347

    Article  CAS  Google Scholar 

  3. Dong M, Dong YM, Ma TH, Wang YW, Peng Y (2012) A highly selective fluorescence enhanced chemosensor for Al3+ in aqueous solution based on a hybrid ligand from BINOL scaffold and β-amino alcohol. Inorg Chim Acta 381:137–142

    Article  CAS  Google Scholar 

  4. Gui SL, Huang YY, Hu F, ** YL, Zhang GX, Yan LS, Zhang DQ, Zhao R (2015) Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on ion-induced aggregation. Anal Chem 87:1470–1474

    Article  CAS  PubMed  Google Scholar 

  5. Kim S, Noh JY, Kim KY, Kim JH, Kang HK, Nam SW, Kim SH, Park S, Kim C, Kim J (2012) Salicylimine-based fluorescent chemosensor for aluminum ions and application to bioimaging. Inorg Chem 51:3597–3602

    Article  CAS  PubMed  Google Scholar 

  6. **e HT, Wu YL, Huang J (2016) A ratiometric fluorescent probe for aluminum ions based-on monomer/excimer conversion and its applications to real samples. Talanta 151:8–13

    Article  CAS  PubMed  Google Scholar 

  7. Yue XL, Li CR, Yang ZY (2017) A novel Schiff-base fluorescent probe based on 1,8- naphthyridine and naphthalimide for Al3+. Inorg Chim Acta 464:167–171

    Article  CAS  Google Scholar 

  8. Animesh S, Arnab B, Sisir L, Avishek B, Subhra KM, Damir AS, Maria GB, Michael B, Yann G, Debasis D (2013) FRET Based Tri-Color Emissive Rhodamine-Pyrene Conjugate as an Al3+ Selective Colorimetric and Fluorescence Sensor for Living Cell Imaging. Dalton Trans 42:13311–13314

    Article  CAS  Google Scholar 

  9. Virk SA, Eslick GD (2015) Meta-analysis of antacid use and Alzheimer’s disease implications for the aluminum hypothesis. Epidemiology 26:769–773

    Article  PubMed  Google Scholar 

  10. Bjorklund G, Stejskal V, Urbina MA, Dadar M, Chirumbolo S, Mutter J (2018) Parkinson’s disease: mechanisms and biochemical processes. Curr Med Chem 25:2198–2214

    Article  CAS  PubMed  Google Scholar 

  11. Martinez CS, Piagette JT, Escobar AG, Martin A, Palacios R, Peçanha FM, Vassallo DV, Exley C, Alonso MJ, Miguel M, Salaices M, Wiggers GA (2017) Aluminum exposure at human dietary levels promotes vascular dysfunction and increases blood pressure in rats: a concerted action of NAD(P)H oxidase and COX-2. Toxicology 390:10–21

    Article  CAS  PubMed  Google Scholar 

  12. Manjunath R, Kannan P (2018) Highly selective rhodamine-based fluorescence turn-on chemosensor for Al3+ ion. Opt Mater 79:38–44

    Article  CAS  Google Scholar 

  13. Sahoo SK, Sharma D, Bera RK, Crisponic G, Callan JF (2012) Iron(III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev 41:7195–7227

    Article  CAS  PubMed  Google Scholar 

  14. Sivaraman G, Iniya M, Anand T, Kotla NG, Sunnapu O, Singaravadivel S, Gulyani A, Chellapp D (2018) Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord Chem Rev 357:50–104

    Article  CAS  Google Scholar 

  15. Liu M, Yu X, Li M, Liao NX, Bi AY, Jiang YP, Liu S, Gong ZC, Zeng WB (2018) Fluorescent probes for the detection of magnesium ions (Mg2+): from design to application. RSC Adv 8:12573–12587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon JY, James TD (2017) Fluorescent chemosensors: the past, present and future. Chem Soc Rev 46:7105–7123

    Article  CAS  PubMed  Google Scholar 

  17. Meng XJ, Li SL, Ma WB, Wang JL, Hu ZY, Cao DL (2018) Highly sensitive and selective chemosensor for Cu2+ and H2PO4- based on coumarin fluorophore. Dyes Pigments 154:194–198

    Article  CAS  Google Scholar 

  18. Borase PN, Thale PB, Sahoo SK, Shankarling GS (2015) An “off-on” colorimetric chemosensor for selective detection of Al3+, Cr3+ and Fe3+: Its application in molecular logic gate. Sens Actuators B Chem 215:451–458

    Article  CAS  Google Scholar 

  19. Kejik Z, Kaplanek R, Havlik M, Briza T, Vavrinova D, Dolensky B, Martasek P, Kral V (2016) Aluminium(III) sensing by pyridoxal hydrazone utilising the chelation enhanced fluorescence effect. J Lumin 180:269–277

    Article  CAS  Google Scholar 

  20. Zhu J, Zhang Y, Wang L, Sun T, Wang M, Wang Y, Ma D, Yang Q, Tang Y (2016) A simple turn-on Schiff base fluorescence sensor for aluminum ion. Tetrahedron Lett 57:3535–3539

    Article  CAS  Google Scholar 

  21. Li CY, Zhou Y, Li YF, Zou CX, Kong XF (2013) Efficient FRET-based colorimetric and ratiometric fluorescent chemosensor for Al3+ in living cells. Sens Actuators B Chem 186:360–366

    Article  CAS  Google Scholar 

  22. Yue XL, Wang ZQ, Li CR, Yang ZY (2017) Naphthalene-derived Al3+ - selective fluorescent chemosensor based on PET and ESIPT in aqueous solution. Tetrahedron Lett 58:4532–4537

    Article  CAS  Google Scholar 

  23. Wang B, Fu T, Yang S, Li J, Chen Y (2013) An intramolecular charge transfer (ICT)- based dual emission fluorescent probe for the ratiometric detection of gold ions. Anal Methods 5:3639–3641

    Article  CAS  Google Scholar 

  24. Li Q, Cai Y, Yao H, Lin Q, Zhu YR, Li H, Zhang YM, Wei TB (2015) A colorimetric and fluorescent cyanide chemosensor based on dicyanovinyl derivatives: utilization of the mechanism of intramolecular charge transfer blocking. Spectrochim Acta A Mol Biomol Spectrosc 136:1047–1051

    Article  CAS  PubMed  Google Scholar 

  25. Torawane P, Tayade K, Bothra S, Sahoo SK, Singh N, Borse A, Kuwar A (2016) A highly selective and sensitive fluorescent ‘turn-on’ chemosensor for Al3+ based on C=N isomerisation mechanism with nanomolar detection. Sens Actuators B Chem 222:562–566

    Article  CAS  Google Scholar 

  26. Heo G, Manivannan R, Kim H, Son YA (2019) Liquid and gaseous state visual detection of chemical warfare agent mimic DCP by optical sensor. Dyes Pigments 171:107712

    Article  CAS  Google Scholar 

  27. Heo G, Manivannan R, Kim H, Kim MJ, Min KS, Son YA (2019) Develo** an RGB - Arduino device for the multi-color recognition, detection and determination of Fe(III), Co(II), Hg(II) and Sn(II) in aqueous media by a terpyridine moiety. Sens Actuators B Chem 297:126723

    Article  CAS  Google Scholar 

  28. Kim IJ, Manivannan R, Son YA (2017) A reaction based colorimetric chemosensor for the detection of cyanide ion in aqueous solution. Sens Actuators B Chem 246:319–326

    Article  CAS  Google Scholar 

  29. Park JH, Manivannan R, Jayasudha P, Son YA (2020) Selective detection of cyanide ion in 100 % water by indolium based dual reactive binding site optical sensor. J Photochem Photobiol A Chem 397:112571

    Article  CAS  Google Scholar 

  30. Manivannan R, Lee HS, Son YA (2022) Simple easy to make xanthene based optical probe for solid and liquid state Hg2+ ion detection. Spectrochim Acta A Mol Biomol Spectrosc 266:120413

    Article  CAS  PubMed  Google Scholar 

  31. Shelar DP, Birari DR, Rote RV, Patil SR, Toche RB, Jachak MN (2011) Novel Synthesis of 2-aminoquinoline-3-carbaldehyde, benzo[b][1,8]naphthyridines and Study of their Fluorescence Behavior. J Phys Org Chem 24:203–211

    Article  CAS  Google Scholar 

  32. Ryu J, Manivannan R, Son YA (2021) Azo dye-based optical probe for the detection toward mimic molecule of date rape drug. Microchem J 166:106237

    Article  CAS  Google Scholar 

  33. Kim H, Manivannan R, Son YA (2020) A chromone based fluorescent probe for the effective detection of aluminium ion. J Nanosci Nanotechnol 20:2840–2846

    Article  CAS  PubMed  Google Scholar 

  34. Ma J, Liu Y, Chen L, **e Y, Wang LY, **e MX (2012) Spectroscopic investigation on the interaction of 3,7-dihydroxyflavone with different isomers of human serum albumin. Food Chem 132:663–670

    Article  CAS  PubMed  Google Scholar 

  35. Manivannan R, Ryu J, Son YA (2021) DPP based dual-sensing probe for the multi-color detection of toxic Co2+/Sn2+ and CN- ions in water: An electronic eye development. Dyes Pigments 192:109425

    Article  CAS  Google Scholar 

  36. Kim MJ, Manivannan R, Kim IJ, Son YA (2017) A colorimetric and fluorometric chemosensor for the selective detection of cyanide ion in both the aqueous and solid phase. Sens Actuators B Chem 253:942–948

    Article  CAS  Google Scholar 

  37. Park JH, Manivannan R, Jayasudha P, Son YA (2020) Spontaneous optical response towards cyanide ion in water by a reactive binding site probe. Spectrochim Acta A Mol Biomol Spectrosc 233:118190

    Article  CAS  PubMed  Google Scholar 

  38. Min KS, Manivannan R, Son YA (2018) Rhodamine-fluorene based dual channel probe for the detection of Hg2+ ions and its application in digital printing. Sens Actuators B Chem 261:545–552

    Article  CAS  Google Scholar 

  39. Hung PJ, Chir JL, Ting W, Wu AT (2015) A selective colorimetric and ratiometric fluorescent chemosensor for detection of Al3+ ion. J Lumin 158:371–375

    Article  CAS  Google Scholar 

  40. Qin JC, Li TR, Wang BD, Yang ZY, Fan L (2014) A sensor for selective detection of Al3+ based on quinoline Schiff-base in aqueous media. Synth Met 195:141–146

    Article  CAS  Google Scholar 

  41. Zhao YH, Zeng X, Mu L, Li J, Redshaw C, Wei G (2014) A reversible and visible colorimetric/fluorescent chemosensor for Al3+ and F- ions with a large Stoke’s shift. Sens Actuators B Chem 204:450–458

    Article  CAS  Google Scholar 

  42. Tian L, Xue J, Yang ZY (2018) A simple quinoline derivative as fluorescent probe with high sensitivity and selectivity for Al3+ in aqueous solution. Tetrahedron Lett 59:4110–4115

    Article  CAS  Google Scholar 

  43. Park HM, Oh BN, Kim JH, Qiong W, Hwang IH, Jung KD, Kim C, Kim J (2011) Fluorescent chemosensor based-on naphthol-quinoline for selective detection of aluminum ions. Tetrahedron Lett 52:5581–5584

    Article  CAS  Google Scholar 

  44. Liao ZC, Yang ZY, Li Y, Wang BD, Zhou Q-X (2013) A simple structure fluorescent chemosensor for high selectivity and sensitivity of aluminum ions. Dyes Pigment 97:124–128

    Article  CAS  Google Scholar 

  45. Guo Z, Niu Q, Li T (2018) Highly sensitive oligothiophene-phenylamine-based dual-functional fluorescence “turn-on” sensor for rapid and simultaneous detection of Al3+ and Fe3+ in environment and food samples. Spectrochim Acta A Mol Biomol Spectrosc 200:76–84

    Article  CAS  PubMed  Google Scholar 

  46. Celestina JJ, Alphonse L, Tharmaraj P, Sheela CD (2019) Novel triazine-based colorimetric and fluorescent sensor for highly selective detection of Al3+. J Sci Adv Mater Dev 4:237–244

    Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Jr Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Zshida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, 09, Revision D.01. Gaussian, Inc., Wallingford CT

Download references

Acknowledgements

The authors are grateful to Chungnam National University for the support of this work.

Funding

This research was supported by Chungnam National University.

Author information

Authors and Affiliations

Authors

Contributions

All the authors (Ramalingam Manivannan, Young-A Son) made substantial contribution in preparing the manuscript.

Corresponding author

Correspondence to Young-A Son.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Informed consent obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1325 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manivannan, R., Son, YA. A Pyrene-Tetrazole Fused Fluorescent Probe for Effective Real Time Detection Towards Aluminium Ion. J Fluoresc 32, 1703–1712 (2022). https://doi.org/10.1007/s10895-022-02985-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02985-4

Keywords

Navigation