Log in

Condensation Product of 1-Naphthaldehyde and 3-Aminophenol: Fluorescent “on” Probe for Ce3+and “off” Probe for Dichromate (Cr2O72−)

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new probe (Z)-3-((naphthalen-1-ylmethylene)amino)phenol has been synthesized by condensation reaction between 1-naphthaldehyde and 3-aminophenol for the fluorescent sensing of Ce3+ by “on” mode and dichromate (Cr2O72−) by “off” mode. Metal ions—Ag+, Al3+, As3+, Ba2+, Ca2+, Cd2+, Ce4+, Co2+, Cr3+, Cr6+, Cu2+, Fe2+, Fe3+, Hg2+, K+, La+, Li+, Mg2+, Mn2+, Na+, Ni2+, Pb2+, Zn2+and anions Br, C2O42−, CH3COO, Cl, CO32−, F, H2PO4, HCO3, HF2, HPO42−, I, MnO4, NO3, OH, S2−, S2O32−, SCN, SO42− do not interfere. The limit of detection (LOD) for sensing Ce3+ and Cr2O72− ions are 1.286 × 10–7 M and 6.425 × 10–6 M, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Acha ND, Elosúa C, Corres JM, Arregui FJ (2019) Fluorescent sensors for the detection of heavy metal ions in aqueous media. Sensors 19(3):599. https://doi.org/10.3390/s19030599

    Article  CAS  PubMed Central  Google Scholar 

  2. Lin ZJ, Zheng HQ, Zheng HY, Lin LP, **n Q, Cao R (2017) Efficient capture and effective sensing of Cr2O72– from water using a zirconium metal-organic framework. Inorg Chem 56(22):14178–14188. https://doi.org/10.1021/acs.inorgchem.7b02327

    Article  CAS  PubMed  Google Scholar 

  3. Jana AK, Natarajan S (2017) Fluorescent metal-organic frameworks for selective sensing of toxic cations (Tl3+, Hg2+) and highly oxidizing anions ((CrO4)2−, (Cr2O7)2−, (MnO4)−). ChemPlusChem 82(8):1153–1163. https://doi.org/10.1002/cplu.201700277

    Article  PubMed  Google Scholar 

  4. Bhuvanesh N, Suresh S, Velmurugan K, Thamilselvan A, Nandhakumar R (2020) Quinoline based probes: Large blue shifted fluorescent and electrochemical sensing of Ce ion and its biological applications. J Photochem Photobiol A Chem 386:112103. https://doi.org/10.1016/j.jphotochem.2019.112103

    Article  CAS  Google Scholar 

  5. Lai X, Wang R, Li J, Qiu G, Liu JB (2019) A cascade reaction-based switch-on fluorescent sensor for Ce(IV) ions in real samples. RSC Adv 9:22053–22056. https://doi.org/10.1039/c9ra03776d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li X, Zheng Y, Tang Y, Chen Q, Gao J, Luo Q, Wang Q (2019) Efficient and visual monitoring of Ce3+ ions by greenfluorescent carbon dots and paper-based sensing. Spectrochim Acta A Mol Biomol Spectrosc 206:240–245. https://doi.org/10.1016/j.saa.2018.08.021

    Article  CAS  PubMed  Google Scholar 

  7. Nemati F, Zare-Dorabei R (2019) A ratiometric probe based on Ag2S quantum dots and graphitic carbon nitride nanosheets for the fluorescent detection of Ce. Talanta 200:249–255. https://doi.org/10.1016/j.talanta.2019.03.059

    Article  CAS  PubMed  Google Scholar 

  8. Ali TA, Mohamed GG, Azzam EMS, Abd-elaal AA (2014) Thiol surfactant assembled on gold nanoparticles ion exchanger for screen-printed electrode fabrication. Potentiometric determination of Ce(III) in environmental polluted samples. Sens Actuators B Chem 191:192–203. https://doi.org/10.1016/j.snb.2013.09.110

    Article  CAS  Google Scholar 

  9. Afkhami A, Madkarian T, Shirzadmehr A, Tabatabaee M, Bagheri H (2012) New Schiff base-carbon nanotube–nanosilica–ionic liquid as a high performance sensing material of a potentiometric sensor for nanomolar determination of Ce(III) ions. Sensors Actuators B Chem 174:237–244. https://doi.org/10.1016/j.snb.2012.07.116

    Article  CAS  Google Scholar 

  10. Bagheri H, Afkhami A, Saber-Tehrani M, Shirzadmehr A, Husain SW, Khoshsafar H, Tabatabaee M (2012) Novel sensor fabrication for the determination of nanomolar concentrations of Ce3+ in aqueous solutions. Anal Methods 4:1753–1758. https://doi.org/10.1039/c2ay00005a

    Article  CAS  Google Scholar 

  11. Das DK, Bharali B, Goyari S (2018) Condensation Product of 4-Methoxybenzaldehyde and Ethylenediamine: “Off-On” Fluorescent Sensor for Ce(III). J Fluoresc 28:1357–1361. https://doi.org/10.1007/s10895-018-2298-0

    Article  CAS  PubMed  Google Scholar 

  12. Sahani MK, Bhardwaj S, Singh AK (2016) Novel potentiometric sensor for selective monitoring of Ce3+ ion in environmental samples. J Electroanal Chem 780:209–216. https://doi.org/10.1016/j.jelechem.2016.08.032

    Article  CAS  Google Scholar 

  13. Dashtian K, Zare-Dorabei R (2017) Synthesis and characterization of functionalized mesoprous SBA-15 decorated with Fe3O4 nanoparticles for removal of Ce(III) ions from aqueous solution: ICP–OES detection and central composite design optimization. J Colloid Interface Sci 494:114–123. https://doi.org/10.1016/j.jcis.2017.01.072

    Article  CAS  PubMed  Google Scholar 

  14. Lashgari N, Badiei A, Ziarani GM (2017) A novel functionalized nanoporous SBA-15 as a selective fluorescent sensor for the detection of multianalytes (Fe3+ and Cr2O72-) in water. J Phys Chem Solids 103:238–248. https://doi.org/10.1016/j.jpcs.2016.11.021

    Article  CAS  Google Scholar 

  15. Su Y, Wang Y, Li X, Li X, Wang R (2016) Imidazolium-based porous organic polymers: anion exchange-drived rapid capture and luminescent probe of Cr2O72-. ACS Appl Mater Interfaces 8(29):18904–18911. https://doi.org/10.1021/acsami.6b05918

    Article  CAS  PubMed  Google Scholar 

  16. Fan K, Bao SS, Nie WX, Liao CH, Zheng LM (2018) Iridium(III)-based metal−organic frameworks as multiresponsive luminescent sensors for Fe3+, Cr2O72−, and ATP2− in aqueous media. Inorg Chem 57(3):1079–1089. https://doi.org/10.1021/acs.inorgchem.7b02513

    Article  CAS  PubMed  Google Scholar 

  17. Goswami P, Das DK (2012) N, N, N, N-tetradentate macrocyclic ligand based selective fluorescent sensor for zinc (II). J Fluoresc 22:1081–1085. https://doi.org/10.1007/s10895-012-1046-0

    Article  CAS  PubMed  Google Scholar 

  18. Kumar J, Sarma MJ, Phukan P, Das DK (2015) A new simple Schiff base fluorescence “on” sensor for Al3+ and its living cell imaging. Dalton Trans 44:4576–4581. https://doi.org/10.1039/C4DT03932G

    Article  CAS  PubMed  Google Scholar 

  19. Das DK, Goswami P, Sarma S (2013) Salicylaldehyde Phenylhydrazone: A new highly selective fluorescent lead (II) probe. J Fluoresc 23(3):503–508. https://doi.org/10.1007/s10895-013-1167-0

    Article  CAS  PubMed  Google Scholar 

  20. Dutta K, Deka RC, Das DK (2013) A New On-fluorescent Probe for Manganese (II) Ion. J Fluoresc 23:1173–1178. https://doi.org/10.1007/s10895-013-1248-0

    Article  CAS  PubMed  Google Scholar 

  21. Dutta K, Deka RC, Das DK (2014) A new fluorescent and electrochemical Zn2+ ion sensor based on Schiff base derived from benzil and L-tryptophan. Spectrochim Acta A Mol Biomol Spectrosc 124:124–129. https://doi.org/10.1016/j.saa.2013.12.090

    Article  CAS  PubMed  Google Scholar 

  22. Sarma S, Bhowmick A, Sarma MJ, Banu S, Phukan P, Das DK (2018) Condensation product of 2-hydroxy-1-napthaldehyde and 2-aminophenol: Selective fluorescent sensor for Al3+ ion and fabrication of paper strip sensor for Al3+ ion. Inorg Chim Acta 469:202–208. https://doi.org/10.1016/j.ica.2017.09.025

    Article  CAS  Google Scholar 

  23. Kumar J, Bhattacharyya PK, Das DK (2015) New duel fluorescent “on–off” and colorimetric sensor for Copper(II): Copper(II) binds through N coordination and pi cation interaction to sensor. Spectrochim Acta A Mol Biomol Spectrosc 138:99–104. https://doi.org/10.1016/j.saa.2014.11.030

    Article  CAS  PubMed  Google Scholar 

  24. Gupta VK, Singh AK, Gupta B (2006) A Ce(III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N, N′-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine. Anal Chim Acta 575:198–204. https://doi.org/10.1016/j.aca.2006.05.090

    Article  CAS  PubMed  Google Scholar 

  25. Yan F, Jiang Y, Fan K, Ma T, Chen L, Ma C (2020) Novel fluorescein- and pyridine-conjugated schiff base probes for the recyclable real-time determination of Ce3+ and F-. Methods Appl Fluoresc 8(1):015002. https://doi.org/10.1088/2050-6120/ab4ee7

    Article  CAS  Google Scholar 

  26. Rofouei MK, Tajarrod N, Masteri-Farahani M, Zadmard R (2015) A new fluorescence sensor for Ce3+ ion using glycine dithiocarbamate capped manganese doped ZnS quantum dots. J Fluoresc 25:1855–1866. https://doi.org/10.1007/s10895-015-1678-y

    Article  CAS  PubMed  Google Scholar 

  27. Salehnia F, Faridbod F, Dezful AS, Ganjali MR, Norouzi P (2017) Ce(III) ion sensing based on graphene quantum dots fluorescent turn-off. J Fluoresc 27:331–338. https://doi.org/10.1007/s10895-016-1962-5

    Article  CAS  PubMed  Google Scholar 

  28. Awual MR, Hasan MM, Shahat A, Naushad M, Shiwaku H, Yaita T (2015) Investigation of ligand immobilized nano-composite adsorbent for efficient Ce(III) detection and recovery. Chem Eng J 265:210–218. https://doi.org/10.1016/j.cej.2014.12.052

    Article  CAS  Google Scholar 

  29. Dmonte DJ, Pandiyarajan A, Bhuvanesh N, Suresh S, Nandhakumar R (2018) Graphene oxide resorcinol hybrid material as fluorescent chemosensor for detection of Ce ion. Mater Lett 227:154–157. https://doi.org/10.1016/j.matlet.2018.05.051

    Article  CAS  Google Scholar 

  30. Liu M, Xu Z, Song Y, Li H, **an C (2018) A novel coumarin-based chemosensor for colorimetric detection of Ag(I) ion and fluorogenic sensing of Ce(III) ion. J Lumin 198:337–341. https://doi.org/10.1016/j.jlumin.2018.02.047

    Article  CAS  Google Scholar 

  31. Shamsipur M, Yousefi M, Ganjali MR (2000) PVC-based 1,3,5-trithiane sensor for Ce(III) ions. Anal Chem 72:2391–2394. https://doi.org/10.1021/ac991155w

    Article  CAS  PubMed  Google Scholar 

  32. Ojo K, Zhao D, Rusinek CA, Pixley SK, Heineman WR (2017) Cathodic strip** voltammetric determination of Ce using indium tin oxide (ITO). Electroanalysis 29:1124–1130. https://doi.org/10.1002/elan.201600714

    Article  CAS  Google Scholar 

  33. Chen SG, Shi Z, Qin L, Jia HL, Zheng HG (2017) Two new luminescent Cd(II)-metal–organic frameworks as bifunctional chemosensors for detection of cations Fe3+, anions CrO42–, and Cr2O72– in aqueous solution. Cryst Growth Des 17(1):67–72. https://doi.org/10.1021/acs.cgd.6b01197

    Article  CAS  Google Scholar 

  34. Gao RC, Guo FS, Bai NN, Wu YL, Yang F, Liang JY, Li ZJ, Wang YY (2016) Two 3D isostructural Ln(III)-MOFs: Displaying the slow magnetic relaxation and luminescence properties in detection of nitrobenzene and Cr2O72–. Inorg Chem 55(21):11323–11330. https://doi.org/10.1021/acs.inorgchem.6b01899

    Article  CAS  PubMed  Google Scholar 

  35. Liu JQ, Li GP, Liu WC, Li QL, Li BH, Gable R, Hou L, Batten SR (2016) Two Unusual Nanocage-Based Ln-MOFs with Triazole Sites: Highly Fluorescent Sensing for Fe3+ and Cr2O72-, and Selective CO2 Capture. ChemPlusChem 81(12):1299–1304. https://doi.org/10.1002/cplu.201600289

    Article  CAS  PubMed  Google Scholar 

  36. Ge FY, Sun GH, Meng L, Ren SS, Zheng HG (2020) Four New Luminescent Metal-Organic Frameworks as Multifunctional Sensors for Detecting Fe3+, Cr2O72– and Nitromethane. Cryst Growth Des 20(3):1898–1904. https://doi.org/10.1021/acs.cgd.9b01593

    Article  CAS  Google Scholar 

  37. He T, Zhang YZ, Kong XJ, Yu J, Lv XL, Wu Y, Guo ZJ, Li JR (2018) Zr(IV)-based metal-organic framework with T-shaped ligand: unique structure, high stability, selective detection, and rapid adsorption of Cr2O72– in water. ACS Appl Mater Interfaces 10(19):16650–16659. https://doi.org/10.1021/acsami.8b03987

    Article  CAS  PubMed  Google Scholar 

  38. Yao ZQ, Li GY, Xu J, Hu TL, Bu XH (2018) A Water-Stable Luminescent ZnII Metal-Organic Framework as Chemosensor for High-Efficiency Detection of CrVI-Anions (Cr2O72- and CrO42-) in Aqueous Solution. Chem Eur J 24:1–8. https://doi.org/10.1002/chem.201705328

    Article  CAS  Google Scholar 

  39. Chen C, Zhang X, Gao P, Hu M (2018) A water stable europium coordination polymer as fluorescent sensor for detecting Fe3+, CrO42-, and Cr2O72- ions. J Solid State Chem 258:86–92. https://doi.org/10.1016/j.jssc.2017.10.004

    Article  CAS  Google Scholar 

  40. Wu Y, Huang Y, Wang Y, Zou X, Wang J, Wu W (2018) A regenerable zinc(II) coordination polymer as a dual-luminescent sensor for detection of Cr2O72- and 2,4,6-trinitrophenol in aqueous phase. J Coord Chem 71(23):3994–4006. https://doi.org/10.1080/00958972.2018.1536784

    Article  CAS  Google Scholar 

  41. Qiao G, Lu D, Tang Y, Gao J, Wang Q (2019) Smart choice of carbon dots as a dual-mode onsite nanoplatform for the trace level detection of Cr2O72-. Dyes Pigm 163:102–110. https://doi.org/10.1016/j.dyepig.2018.11.049

    Article  CAS  Google Scholar 

  42. Yuan YY, Sun YJ, Liu PJ, Zhang CX, Wang QL (2018) A novel rare-earth nitronyl nitroxide radical complex as a high-efficiency sensor for Cr3+ and Cr2O72− ions in aqueous solutions. Inorg Nano-Met Chem 48(9):454–460. https://doi.org/10.1080/24701556.2019.1569688

    Article  CAS  Google Scholar 

  43. Mohandoss S, Sivakamavalli J, Vaseeharan B, Stalin T (2016) Host-guest molecular recognition based fluorescence On-Off-On chemosensor for nanomolar level detection of Cu2+ and Cr2O72− ions: Application in XNOR logic gate and human lung cancer living cell imaging. Sens Actuators B Chem 234:300–315. https://doi.org/10.1016/j.snb.2016.04.148

    Article  CAS  Google Scholar 

  44. Sahana A, Banerjee A, Lohar S, Panja S, Mukhopadhyay SK, Matalobos JS, Das D (2013) Fluorescence sensing of arsenate at nanomolar level in a greener way: naphthalene based probe for living cell imaging. Chem Commun 49:7231–7233. https://doi.org/10.1039/C3CC43211D

    Article  CAS  Google Scholar 

  45. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  46. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  47. Frisch MJ et al (2016) Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT

  48. Cundari TR, Stevens WJ (1993) Effective core potential methods for the lanthanides. J Chem Phys 98:5555. https://doi.org/10.1063/1.464902

    Article  CAS  Google Scholar 

  49. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank DST, New Delhi for the MRP under SERB No. EMR/2016/001745 and ASTEC, Guwahati for financial support. DST is also thanked for financial support to the department through FIST program.

Funding

Funding received from DST, New Delhi (EMR/2016/001745).

Author information

Authors and Affiliations

Authors

Contributions

PB has done all the experimental work; DKD has done analysis of the results and written the paper; AKG has done the computational part.

Corresponding author

Correspondence to Diganta Kumar Das.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordoloi, P., Guha, A.K. & Das, D.K. Condensation Product of 1-Naphthaldehyde and 3-Aminophenol: Fluorescent “on” Probe for Ce3+and “off” Probe for Dichromate (Cr2O72−). J Fluoresc 32, 1189–1198 (2022). https://doi.org/10.1007/s10895-022-02927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02927-0

Keywords

Navigation