Log in

Cyanine-based Fluorescent Probe for Cyanide Ion Detection

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Cyanine-based probe-possessing indolium iodide and indole unit were synthesized in two-step with easy available raw material: a potential probe for the cyanide ion detection. The detecting ability of the probe was investigated and confirmed by a visual and instrumental approach. A noticeable color change from orange to colorless obtained only for cyanide ions and other added ions does not impart any changes visually and through UV and Fluorescence technique. To confirm the mechanism of sensing 1H-NMR recorded. From the result, the peak belonging to N-methyl displayed an upfield shift from 4.01 δ ppm to 2.74 δ ppm due to the disappearance of indolium iodide ion and the olefin protons peaks were shifted from 7.19 to 6.17 and 8.70 to 7.20 δ ppm confirms the nucleophilic addition of cyanide ion to the probe. Test kit from filter paper prepared for the real-time monitoring cyanide ion. The prepared strip is effective in detecting cyanide ion with a visual color change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data available.

References

  1. Schwartz B, Drueckhammer DG (1995) A simple method for determining the relative strengths of normal and low-​barrier hydrogen bonds in solution: implications to enzyme catalysis. J Am Chem Soc 117:11902–11905

    Article  CAS  Google Scholar 

  2. Clark JF, Clark DL, Whitener GD, Schroeder NC, Straus SH (1996) Isolation of soluble 99Tc as a compact solid using a recyclable, redox-​active, metal-​complex extractant. Environ Sci Technol 30:3124–3126

    Article  CAS  Google Scholar 

  3. Sadyrbaeva TZ (2012) Gold (III) recovery from non-toxic electrolytes using hybrid electrodialysis–electrolysis process. Sep Purif Technol 86:262–265

    Article  CAS  Google Scholar 

  4. Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66:113–120

    Article  CAS  Google Scholar 

  5. Boening DW, Chew CM (1999) A critical review: general toxicity and environmental fate of three aqueous cyanide ions and associated ligands. Water Air Soil Pollut 109:67–79

    Article  CAS  Google Scholar 

  6. Baskin SI, Brewer TG (1997) Medical aspects of chemical and biological warfare, ed. F. Sidell, E.T. Takafuji, D.R. Franz, TMM Publication, Washington, DC. 10: 271–286

  7. Young C, Tidwell L, Anderson C (2001) Cyanide: social, industrial, and economic aspects; minerals, metals, and materials society: Warrendale, PA. 35

  8. Guidelines for Drinking-Water Quality (2009) Cyanide in drinking water. World Health Organization, Geneva, Switzerland

    Google Scholar 

  9. Shan D, Mousty C, Cosnier S (2004) Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors. Anal Chem 76:178–183

    Article  CAS  Google Scholar 

  10. Safavi A, Maleki N, Shahbaazi HR (2004) Indirect determination of cyanide ion and hydrogen cyanide by adsorptive strip** voltammetry at a mercury electrode. Anal Chim Acta 503:213–231

    Article  CAS  Google Scholar 

  11. Tian Y, Dasgupta PK, Mahon SB, Ma J, Brenner M, Wang J, Boss GR (2013) A disposable blood cyanide sensor. Anal Chim Acta 768:129–135

    Article  CAS  Google Scholar 

  12. Christison TT, Rohrer JS (2007) Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection. J Chromatogr A 1155:31–39

    Article  CAS  Google Scholar 

  13. Xu Z, Chen X, Kim HN, Yoon J (2010) Sensors for the optical detection of cyanide ion. Chem Soc Rev 39:127–137

    Article  CAS  Google Scholar 

  14. Jackson R, Oda RP, Bhandari RK, Mahon SB, Brenner M, Rockwood GA, Logue BA (2014) Development of a fluorescence-based sensor for rapid diagnosis of cyanide exposure. Anal Chem 86:1845–1852

    Article  CAS  Google Scholar 

  15. Hong SJ, Yoo J, Kim SH, Kim JS, Yoon J, Lee CH (2009) Lee, beta-vinyl substituted calix 4 pyrrole as a selective ratiometric sensor for cyanide anion. Chem Commun 45:189–191

    Article  Google Scholar 

  16. Chen CL, Chen YH, Chen CY, Sun SS (2006) Dipyrrole carboxamide derived selective ratiometric probes for cyanide ion. Org Lett 8:5053–5056

    Article  CAS  Google Scholar 

  17. Yu HB, Zhao Q, Jiang ZX, Qin JG, Li Z (2010) A ratiometric fluorescent probe for cyanide: convenient synthesis and the proposed mechanism. Sens Actuators B 148:110–116

    Article  CAS  Google Scholar 

  18. Lin Q, Lu TT, Zhu X, Sun B, Yang QP, Wei TB, Zhang YM (2015) A novel supramolecular metallogel-​based high-​resolution anion sensor array. Chem Commun 51:1635–1638

    Article  CAS  Google Scholar 

  19. Shi BB, Zhang P, Wei TB, Yao H, Lin Q, Zhang YM (2013) Highly selective fluorescent sensing for CN in water: utilization of the supramolecular self-assembly. Chem Commun 49:7812–7814

    Article  CAS  Google Scholar 

  20. Lin Q, Sun B, Yang QP, Fu YP, Zhu X, Wei TB, Zhang YM (2014) Double metal ions competitively control the guest-​sensing process: a facile approach to stimuli-​responsive supramolecular gels. Chem Eur J 20:11457–11462

    Article  CAS  Google Scholar 

  21. Yang L, Li X, Yang J, Qu Y, Hua J (2013) Colorimetric and ratiometric near-infrared fluorescent cyanide chemodosimeter based on phenazine derivatives. ACS Appl Mater Interfaces 5:1317–1326

    Article  CAS  Google Scholar 

  22. Wang Y, Kim SH (2014) Colorimetric chemodosimeter for cyanide detection based on spiropyran derivative and its thermodynamic studies. Dyes Pigm 102:228–233

    Article  CAS  Google Scholar 

  23. Li JJ, Wei W, Qi XL, Xu X, Liu YC, Lin QH, Dong W (2016) Rational design, synthesis of reaction-based dual-channel cyanide sensor in aqueous solution. Spectrochim Acta A 152:288–293

    Article  CAS  Google Scholar 

  24. You GR, Park GJ, Lee SA, Choi YW, Kim YS, Lee JJ, Kim C (2014) A single chemosensor for multiple target anions: The simultaneous detection of CN- and OAc- in aqueous media. Sens Actuators B 202:645–655

    Article  CAS  Google Scholar 

  25. El-Shishtawy RM, Al-Zahrani FAM, Al-amshany ZM, Asiri AM (2017) Synthesis of a new fluorescent cyanide chemosensor based on phenothiazine derivative. Sens Actuators B 240:288–296

    Article  CAS  Google Scholar 

  26. Nandi LG, Nicoleti CR, Bellettini IC, Machado VG (2014) Optical chemosensor for the detection of cyanide in water based on ethyl(hydroxyethyl)cellulose functionalized with brooker’s merocyanine. Anal Chem 86:4653–4656

    Article  CAS  Google Scholar 

  27. Cheng X, Zhou Y, Qin J, Li Z (2012) Reaction-based colorimetric cyanide chemosensors: rapid naked-eye detection and high selectivity. ACS Appl Mater Interfaces 4:2133–2138

    Article  CAS  Google Scholar 

  28. Hu JW, Lin WC, Hsiao SY, Wu YH, Chen HW, Chen KY (2016) An indanedione-based chemodosimeter for selective naked-eye and fluorogenic detection of cyanide. Sens Actuators B 233:510–519

    Article  CAS  Google Scholar 

  29. Lv X, Liu J, Liu Y, Zhao Y, Sun Y-Q, Wang P, Guo W (2011) Ratiometric fluorescence detection of cyanide based on a hybrid coumarin-hemicyanine dye: the large emission shift and the high selectivity. Chem Commun 47:12843–12845

    Article  CAS  Google Scholar 

  30. Li J, Wei W, Qi X, Zuo G, Fang J, Dong W (2016) Highly selective colorimetric/fluorometric dual-channel sensor for cyanide based on ICT off in aqueous solution. Sens Actuators B 228:330–334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Acharya Nagarjuna University for providing lab facilities to conduct research work.

Funding

No funding received from any source.

Author information

Authors and Affiliations

Authors

Contributions

All authors (Mahesh Gosi, Nagaraju Marepu, and Yeturua Sunandamma) made substantial contribution in preparing the manuscript.

Corresponding author

Correspondence to Yeturu Sunandamma.

Ethics declarations

Consent to Participate

Informed consent obtained from all individual participants included in the study.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 720 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosi, M., Marepu, N. & Sunandamma, Y. Cyanine-based Fluorescent Probe for Cyanide Ion Detection. J Fluoresc 31, 1409–1415 (2021). https://doi.org/10.1007/s10895-021-02771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02771-8

Keywords

Navigation