Log in

How the Ecology of Calcified Red Macroalgae is Investigated under a Chemical Approach? A Systematic Review and Bibliometric Study

  • Review
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Characteristics such as calcareous morphology and life cycle are used to understand the ecology of calcified rhodophytes. However, there is limited information regarding their chemical profiles and biological activities. Therefore, a systematic review (PRISMA) was conducted to assess the influence of the chemistry of calcareous rhodophytes on ecological interactions in the marine environment. The keywords used were: ["Chemical AND [Ecology OR Interaction OR Response OR Defense OR Effect OR Cue OR Mediated OR Induce]"] AND ["Red Seaweed" OR "Red Macroalgae" OR Rhodophy?] AND [Calcified OR Calcareous] in Science Direct, Scielo, PUBMED, Springer, Web of Science, and Scopus. Only English articles within the proposed theme were considered. Due to the low number of articles, another search was conducted with three classes and 16 genera. Finally, 67 articles were considered valid. Their titles, abstracts, and keywords were analyzed using IRaMuTeQ through factorial, hierarchical and similarity classification. Most of the studies used macroalgae thallus to evaluate chemical mediation while few tested crude extracts. Some substances were noted as sesquiterpene (6-hydroxy-isololiolide), fatty acid (heptadeca5,8,11-triene) and dibromomethane. The articles were divided into four classes: Herbivory, Competition, Settlement/Metamorphosis, and Epiphytism. Crustose calcareous algae were associated with studies of Settlement/Metamorphosis, while calcified algae were linked to herbivory. Thus, the importance of chemistry in the ecology of these algae is evident,and additional studies are needed to identify the substances responsible for ecological interactions. This study collected essential information on calcified red algae, whose diversity appears to be highly vulnerable to the harmful impacts of ongoing climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ali AI, Bour ME, Ktari L, Bolhuis H, Ahmed M, Boudabbous A (2012) Jania rubens-associated bacteria: molecular identification and antimicrobial activity. J Appl Phycol. https://doi.org/10.1007/s10811-011-9758-0

  • Al-Sofyani AA (2017) Antibiofilm and antioxidant activities of extracts of crustose coralline alga Lithophyllum sp. from the central Red Sea, Saudi Arabia. JKAU: Mar Sci. https://doi.org/10.4197/Mar.26-2.4

  • Amsler CD (2008) Algal Chemical Ecology. Springer, Berlin

    Book  Google Scholar 

  • Asnaghi V, Chiantore M, Mangialajo L, Gazeau F, Francour P, Alliouane A, Gattuso J (2013) Cascading Effects of Ocean Acidification in a Rocky Subtidal Community. Plos One.https://doi.org/10.1371/journal.pone.0061978

  • Awad NE (2004) Bioactive Brominated Diterpenes from the Marine Red Alga Jania Rubens (L.) Lamx Phytother Res. https://doi.org/10.1002/ptr.1273

  • Barattolo F (1991) Mesozoic and Cenozoic Marine Benthic Calcareous algae with Particular Regard to Mesozoic Dasycladaleans. In: Riding R (ed) Calcareous Algae and Stromatolites. Springer, Berlin, pp 504–540

    Chapter  Google Scholar 

  • Barner AK, Hacker SD, Menge BA, Nielsen KJ (2016) The complex net effect of reciprocal interactions and recruitment facilitation maintains an intertidal kelp community. J Ecol.https://doi.org/10.1111/1365-2745.12495

  • Barry JP, Ehret MJ (1993) Diet, food preference, and algal availability for fishes and crabs on intertidal reef communities in southern California. Environ Biol Fishes.https://doi.org/10.1007/BF00000715

  • Bedoux G, Bourgougnon N (2015) Bioactivity of Secondary Metabolites from Macroalgae. In: Sahoo D, Seckbach J (eds) The Algae World. Springer, Berlin, pp 391-401. https://doi.org/10.1007/978-94-017-7321-8_14

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2010) Marine natural products. Nat Prod Rep.https://doi.org/10.1039/b906091j

  • Bolser RC, Hay ME (1996) Are Tropical Plants Better Defended? Palatability and Defenses of Temperate vs. Tropical Seaweeds. Ecol. https://doi.org/10.2307/2265730

  • Bonaldo RM, Hay ME (2014) Seaweed-Coral Interactions: Variance in Seaweed Allelopathy, Coral Susceptibility, and Potential Effects on Coral Resilience. Plos One.https://doi.org/10.1371/journal.pone.0085786

  • Boopathy NS, Kathiresan K (2013) Anticancer agents derived from marine algae. Funct Ingred Algae Foods Nutraceuticals.https://doi.org/10.1533/9780857098689.2.307

  • Brooker RM, Sih TL, Dixson DL (2017) Contact with seaweed alters prey selectivity in a coral-feeding reef fish. Mar Ecol Prog Ser.https://doi.org/10.3354/meps12317

  • Castilla-Gavilán M, Turpin V, Buzin F, Cognie B, Decottignies (2018) Optimizing metamorphosis in Paracentrotus lividus aquaculture using alternative macroalgae species to Corallina sp. Aquac Int.https://doi.org/10.1007/s10499-018-0305-8

  • Chhetri BK, Mojib N, Moore SG, Delgadillo DA, Burch JE, Barrett NH, Gaul DA, Marquez L, Soapi K, Nelson HM, Quave CL, Kubanek J (2023) Cryptic Chemical Variation in a Marine Red Alga as Revealed by Nontargeted Metabolomics. Acs Omega.https://doi.org/10.1021/acsomega.3c00301

  • Cornwall CE, Carlot J, Branson O, Courtney TA, Harvey BP, Perry CT, Andersson AJ, Diaz-Pulido G, Johnson MD, Kennedy E, Krieger EC, Mallela J, McCoy SJ, Nugues MM, Quinter E, Ross CL, Ryan E, Saderne V, Comeau S (2023) Crustose coralline algae can contribute more than corals to coral reef carbonate production. Commun Earth Environ.https://doi.org/10.1038/s43247-023-00766-w

  • Da Gama BAP, Carvalho AGV, Weidner K, Soares AR, Coutinho R, Fleury BG, Teixeira VL, Pereira RC (2008) Antifouling activity of natural products from Brazilian seaweeds. Bot Mar. https://doi.org/10.1515/BOT.2008.027

  • Da Gama BAP, Plouguerné E, Pereira RC (2014) The Antifouling Defence Mechanisms of Marine Macroalgae. In: Bourgougnon N (ed) Advances in botanical research. Institut Universitaire Européen de la Mer, Vannes, pp. 413-440. https://doi.org/10.1016/B978-0-12-408062-1.00014-7

  • Dixit D, Reddy CRK (2017) Non-Targeted Secondary Metabolite Profile Study for Deciphering the Cosmeceutical Potential of Red Marine Macro Alga Jania rubens—An LCMS-Based Approach. Cosmetic.https://doi.org/10.3390/cosmetics4040045

  • Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate Change Impacts on Marine Ecosystems. Annu Rev Mar Sci. https://doi.org/10.1146/annurev-marine-041911-111611

  • Duffy JE, Hay ME (1990) Seaweed Adaptations to herbivory. Biosci.https://doi.org/10.2307/1311214

  • El-Din SMM, El-Ahwany AMD (2016) Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J Taibah Univ Sci.https://doi.org/10.1016/j.jtusci.2015.06.004

  • Figueiredo MAO, Horta PA, Pedrini AG, Nunes JMC (2008) Benthic marine algae of the coral reefs of Brazil: A literature review. Oecologia 12:258–269

    Article  Google Scholar 

  • Fine M, Hoegh-Guldberg O, Meroz-Fine E, Dove S (2019) Ecological changes over 90 years at Low Isles on the Great Barrier Reef. Nat Commun.https://doi.org/10.1038/s41467-019-12431-y

  • Fleury BG, Figueiredo L, Marconi MI, Teixeira VL, Ferreira ABB, Pinto AC (2011) Fatty Acids as Chemotaxonomic Markers of Marine Macrophytes from Rio de Janeiro State, Brazil. Nat Prod Commun 6:667–672

    CAS  PubMed  Google Scholar 

  • Foster MS, Riosmena-Rodriguez R, Steller DL, Woelkerling WJ (1977) Living rhodolith beds in the Gulf of California and their implications for paleoenvironmental interpretation. Geol S Am S.https://doi.org/10.1130/0-8137-2318-3.127

  • Fujita D, Masaki T (1985). The Antifouling by Shedding of Epithallium in Articulated Coralline Algae. Mar Fouling.https://doi.org/10.4282/sosj1979.6.1

  • Fusetani N (2003) Biofouling and antifouling. Nat Prod Rep.https://doi.org/10.1039/B302231P

  • Gómez-Lemos LA, Doropoulos C, Bayraltarov E, Diaz-Pulido G (2018) Coralline algal metabolites induce settlement and mediate the inductive effect of epiphytic microbes on coral larvae. Sci Rep-Uk.https://doi.org/10.1038/s41598-018-35206-9

  • Gonzalez M, Goff L (1989) The red algal epiphytes Microcladia coulteri and M. californica (Rhodophyceae, Ceramiaceae). II. Basiphyte specificity. J Phycol 25:558–567

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2023) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed 10 Feb 2023

  • Harrington L, Fabricius K, De’Aht G, Negri A (2004) Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecol.https://doi.org/10.1890/04-0298

  • Hay ME, Paul VJ, Lewis SM, Gustafson K, Tucker J, Trindell RN (1988) Can tropical seaweeds reduce herbivory by growing at night? Diel patterns of growth, nitrogen content, herbivory, and chemical versus morphological defenses. Oecologiahttps://doi.org/10.1007/BF00378604

  • Hay ME, Kappel QE, Fenical W (1994) Synergisms in Plant Defenses against Herbivores: Interactions of Chemistry, Calcification, and Plant Quality. Ecol.https://doi.org/10.2307/1939631

  • Hay ME (1984) Predictable spatial escapes from herbivory: how do these affect the evolution of herbivore resistance in tropical marine communities? Oecologia.https://doi.org/10.1007/bf00379139

  • Hay ME (1996) Marine chemical ecology: what's known and what's next? J Exp Mar Biol.https://doi.org/10.1016/s0022-0981(96)02659-7

  • Van der Heijden LH, Kamenos NA (2015) Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial. Biogeosciences.https://doi.org/10.5194/bg-12-6429-2015

  • Hellio C, Broise DDL, Dufossé L, Gal YL, Bourgougnon N (2001) Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Mar Environ Res. https://doi.org/10.1016/S0141-1136(01)00092-7

  • Hofmann LC, Bischof K (2014) Ocean acidification effects on calcifying macroalgae. Aquat Biol. https://doi.org/10.3354/ab00581

    Article  Google Scholar 

  • Huggett MJ, Williamson JE, Nys R, Kjelleber S, Steinberg PD (2006) Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia. https://doi.org/10.1007/s00442-006-0470-8

    Article  PubMed  Google Scholar 

  • Hurd CL, Harrison PJ, Bishof K, Lobban CS (2014) Seaweed Ecology and Physiology. Cambridge University Press, United Kingdom

    Book  Google Scholar 

  • James NP, Wray JL, Ginsburg RN (1988) Calcification of encrusting aragonitic algae (Peyssonneliaceae); implications for the origin of late Paleozoic reefs and cements. J Sediment Res. https://doi.org/10.1306/212F8D78-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Jeong J, ** H, Sohn CH, Suh K, Hong Y (2000) Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J Appl Phycol. https://doi.org/10.1023/A:1008139129057

    Article  Google Scholar 

  • Johansen HW (1981) Coralline Algae: A First Synthesis. CRC Press, Boca Raton

    Google Scholar 

  • Johnson MD, Price NN, Smith JE (2014) Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. PEERJ. https://doi.org/10.7717/peerj.411

    Article  PubMed  PubMed Central  Google Scholar 

  • Jompa J, McCook LJ (2003) Coral–algal competition: macroalgae with different properties have different effects on corals. Mar Ecol Prog Ser 258:87-95

  • Keats D, Knight M, Pueschel C (1997) Antifouling effects of epithelial shedding in three crustose coralline algae (Rhodophyta, Coralinales) on a coral reef. J Exp Mar Biol Ecol. https://doi.org/10.1016/S0022-0981(96)02771-2

  • Khairy HM, El-Sheikh MA (2015) Antioxidant activity and mineral composition of three Mediterranean common seaweeds from Abu-Qir Bay, Egypt. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2015.01.010

  • Kim M, Choi J, Kang S, Cho J, ** H, Chun B, Hong Y (2004) Multiple allelopathic activity of the crustose coralline alga Lithophyllum yessoense against settlement and germination of seaweed spores. J Appl Phycol. https://doi.org/10.1023/B:JAPH.0000048497.62774.38

  • Kitamura H, Kitahara S, Koh HB (1993) The induction of larval settlement and metamorphosis of two sea urchins, Pseudocentrotus depressus and Anthocidaris crassispina, by free fatty acids extracted from the coralline red alga Corallina pilulifera. Mar Biol.https://doi.org/10.1007/BF00349836

  • Leal MC, Munro MHG, Blunt JW, Puga J, Jesus B, Calado R, Rosa R, Madeira C (2013) Biogeography and biodiscovery hotspots of macroalgal marine natural products. Natural product reports. Nat Prod Rep. https://doi.org/10.1039/C3NP70057G

  • Lefranc F, Koutsaviti A, Ioannou E, Kornienko A, Roussis V, Kiss R, Newman D. (2019) Algae metabolites: from in vitro growth inhibitory effects to promising anticancer activity. Nat Prod Rep.https://doi.org/10.1039/C8NP00057C

  • Li J, Rahimi SAKA, Satuito CG, Kitamura H (2004) Combination of macroalgae-conditioned water and periphytic diatom Navicula ramosissima as an inducer of larval metamorphosis in the sea urchins Anthocidaris crassispina and Pseudocentrotus depressus. SOSJ 21:1–6. https://doi.org/10.4282/sosj.21.1

    Article  Google Scholar 

  • Lirman D (2001) Competition between macroalgae and corals: effects of herbivore exclusion and increased algal biomass on coral survivorship and growth. Coral Reefs.https://doi.org/10.1007/s003380000125

  • Littler MM (1976) Calcification and its Role among the Macroalgae. Micronesica-Series 12:27–41

    Google Scholar 

  • Littler MM, Littler DS (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: Field and laboratory tests of a functional form model. Am Nat 116:25–44. https://doi.org/10.1086/283610

    Article  Google Scholar 

  • Littler MM, Taylor PR, Littler DS (1983) Algal Resistance to Herbivory on a Caribbean Barrier Reef. Coral Reefs.https://doi.org/10.1007/BF02395281

  • Liu S, Liao LM, Wang W (2013) Conspecificity of two morphologically distinct calcified red algae from the northwest Pacific Ocean: Galaxaura pacifica and G. filamentosa (Galaxauraceae, Rhodophyta). Bot Stud. https://doi.org/10.1186/1999-3110-54-1

  • Lobel PS, Anderson DM, Durand-Clement M (1988) Assessment of Ciguatera Dinoflagellate Populations: Sample Variability and Algal Substrate Selection. Biol Bull.https://doi.org/10.2307/1541896

  • Loffler Z, Bellwood DR, Hoey AS (2015a) Among-habitat algal selectivity by browsing herbivores on an inshore coral reef. Coral Reefs.https://doi.org/10.1007/s00338-015-1265-3

  • Loffler Z, Belwood DR, Hoey AS (2015b) Associations among coral reef macroalgae influence feeding by herbivorous fishes. Coral Reefs.https://doi.org/10.1007/s00338-014-1236-0

  • Luyen Q, Cho J, Choi J, Kang J, Park NG, Hong Y (2009) Isolation of algal spore lytic C17 fatty acid from the crustose coralline seaweed Lithophyllum yessoense. J Appl Phycol.https://doi.org/10.1007/s10811-008-9387-4

  • Manilal A, Sujith S, Sabarathnam B, Kiran GS, Selvin J, Shakir C, Lipton AP (2010) Antifouling Potentials of Seaweeds Collected from the Southwest Coast of India. World J Agric Sci 6:243–248

    CAS  Google Scholar 

  • Martins CDL, Ramlov F, Carneiro NPN, Gestinari LM, Santos BF, Bento LM, Lhullier C, Gouvea L, Bastos E, Horta PA (2012) Antioxidant properties and total phenolic contents of some tropical seaweeds of the Brazilian coast. J Appl Phycol.https://doi.org/10.1007/s10811-012-9918-x

  • Martone PT, Schipper SR, Froese T, Bretner J, Demong A, Eastham TM (2021) Calcification does not necessarily protect articulated coralline algae from urchin grazing. J Exp Mar Biol Ecol.https://doi.org/10.1016/j.jembe.2021.151513

  • Maschek JA, Baker BJ (2001) The Chemistry of Algal Secondary Metabolism. In: McClintock JB, Baker BJ (eds) Marine Chemical Ecology. CRC Press, Boca Raton, pp 1–24

    Google Scholar 

  • McClintock JB, Baker BJ (2001) Marine Chemical Ecology. CRC Press, Boca Raton

    Book  Google Scholar 

  • McCook LJ, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs.https://doi.org/10.1007/s003380000129

  • McCormick MI, Barry RP, Allan BJM (2017) Algae associated with coral degradation affects risk assessment in coral reef fishes. Sci Rep-Uk.https://doi.org/10.1038/s41598-017-17197-1

  • McCoy SJ, Kamenos NA (2015) Coralline Algae (Rhodophyta) In A Changing World: Integrating Ecological, Physiological, and Geochemical Responses to Global Change. J Phycol https://doi.org/10.1111/jpy.12262

  • McCoy SJ, Kamenos NA (2018) Coralline algal skeletal mineralogy affects grazer impacts. Glob Chang Biol.https://doi.org/10.1111/gcb.14370

  • Medeiros HE, Da Gama BAP, Gallerani G (2007) Antifouling Activity of Seaweed Extracts from Guarujá, São Paulo, Brazil. Braz J Oceanogr 55:257–264

    Article  Google Scholar 

  • Mellin C, Thompson A, Jonker MJ, Emslie MJ (2019) Cross-Shelf Variation in Coral Community Response to Disturbance on the Great Barrier Reef. Diversity. https://doi.org/10.3390/d11030038

  • Meyer KD, Paul VJ, Sanger HR, Nelson SG (1994) Effects of seaweed extracts and secondary metabolites on feeding by the herbivorous surgeonfish Naso lituratus. Coral Reefs.https://doi.org/10.1007/BF00300770

  • Meyer KD, Paul VJ (1995) Variation in secondary metabolite and aragonite concentrations in the tropical green seaweed Neomeris annulata: effects on herbivory by fishes. Mar Biol https://doi.org/10.1007/BF00350676

  • Mogstad AA, Johnsen G (2017) Spectral characteristics of coralline algae: a multi-instrumental approach, with emphasis on underwater hyperspectral imaging. Appl Optics 56:9957–9975

    Article  CAS  Google Scholar 

  • Morcom NF, Woelkerling WJ (2000) A critical interpretation of coralline-coralline (Corallinales, Rhodophyta) and coralline-other plant interactions. Cryptogam. Algol. https://doi.org/10.1016/S0181-1568(00)00102-1

  • Nakahara H, Sakami T, Chinain M, Ishida Y (1996) The role of macroalgae in epiphytism of the toxic dinoflagelate Gambierdiscus toxicus (Dinophyceae). Phycol Reshttps://doi.org/10.1111/j.1440-1835.1996.tb00385.x

  • Nash MC, Diaz-Pulido G, Harvey AS, Adey W (2019) Coralline algal calcification: A morphological and process-based understanding. Plos One.https://doi.org/10.1371/journal.pone.0221396

  • Nekooei M, Shafiee SM, Zahiri M, Maryamabadi A, Nabipour I (2021) The methanol extract of red algae, Dichotomaria obtusata, from Persian Gulf promotes in vitro osteogenic differentiation of bone marrow mesenchymal stem cells; a biological and phytochemical study. J Pharm Pharmacol.https://doi.org/10.1093/jpp/rgaa046

  • Nelson WA (2009) Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res.https://doi.org/10.1071/MF08335

  • Nieder C, Liao C, Chen CA, Liu S (2019) Filamentous calcareous alga provides substrate for coral-competitive macroalgae in the degraded lagoon of Dongsha Atoll, Taiwan. Plos One. https://doi.org/10.1371/journal.pone.0200864

  • Nieder C, Liao C, Lee C, Clements KD, Liu S (2022) Novel field observations of coral reef fishes feeding on epiphytic and epizoic organisms associated with the allelopathic seaweed Galaxaura divaricata. Ecol Evol.https://doi.org/10.1002/ece3.9529

  • Ohsawa N, Ogata Y, Okada N, Itoh N (2001) Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide. Phytochem.https://doi.org/10.1016/s0031-9422(01)00259-x

  • Padilla DK (1989). Algal structure defenses: form and calcification in resistance to tropical limpets. Ecol.https://doi.org/10.2307/1941352

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Woder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJhttps://doi.org/10.1136/bmj.n71

  • Parsons ML, Settlemier CJ, Ballauer JM (2011) An examination of the epiphytic nature of Gambierdiscus toxicus, a dinoflagellate involved in ciguatera fish poisoning. Harmful Algae.https://doi.org/10.1016/j.hal.2011.04.011

  • Paul VJ, Hay M (1986) Seaweed susceptibility to herbivory: chemical and morphological correlates. Mar Ecol Prog Ser.https://doi.org/10.3354/meps033255

  • Pearce CM, Scheibling RE (1990) Induction of Metamorphosis of Larvae of the Green Sea Urchin, Strongylocentrotus droebachiensis, by Coralline Red Algae. Biol Bull.https://doi.org/10.2307/1542322

  • Pennings SC, Svedberg J (1993) Does CaCO3 in food deter feeding by sea urchins? Mar Ecol Prog Ser 101:163–167

    Article  CAS  Google Scholar 

  • Pereira RC, Da Gama BAP, Coutinho R, Yoneshigue-Valentin Y (2003) Ecological roles of natural products of the brazilian red seaweed Laurencia obtusa. Braz J Biol.https://doi.org/10.1590/S1519-69842003000400013

  • Rasher DB, Hay ME (2010) Chemically rich seaweeds poison corals when not controlled by herbivores. P Natl Acad Sci-Biol. https://doi.org/10.1073/pnas.0912095107

  • Rasher DB, Hay ME (2014) Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed. P Roy Soc B-Biol Sci. https://doi.org/10.1098/rspb.2013.2615

  • Rasher DB, Stout EP, Engel S, Kubanek J, Hay ME (2011) Macroalgal terpenes function as allelopathic agents against reef corals. P Natl Acad Sci-Biol.https://doi.org/10.1073/pnas.1108628108

  • Rich WA, Schubert N, Schläpfer N, Carvalho VF, Horta ACL, Horta PA (2018) Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Mar Environ Res.https://doi.org/10.1016/j.marenvres.2018.09.026

  • Riding R, Guo L (1991) Permian Marine Calcareous Algae. In: Riding R (ed) Calcareous Algae and Stromatolites. Springer, Berlin, pp 452–480

    Chapter  Google Scholar 

  • Roberts RD, Lapworth C (2001) Effect of delayed metamorphosis on larval competence, and post-larval survival and growth, in the abalone Haliotis iris Gmelin. J Exp Mar Biol Ecol.https://doi.org/10.1016/S0022-0981(00)00346-4

  • Rosa SD, Kamenarska Z, Stefanov K, Dimitrova-Konaklieva S, Najdenski C, Tzvetkova I, Ninova V, Popov S (2003) Chemical Composition of Corallina mediterranea Areschoug and Corallina granifera Ell. et Soland. Z Naturforsch C. https://doi.org/10.1515/znc-2003-5-606

  • Rowley, RJ (1989) Settlement and recruitment of sea urchins (Strongylocentrotus spp.) in a sea-urchin barren ground and a kelp bed: are populations regulated by settlement or post-settlement processes? Mar Biol. https://doi.org/10.1007/BF00394825

  • Ryu B, Qian Z, Kim M, Nam KW, Kim S (2009) Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2008.09.001

  • Santos GN, Pestana EMS, Santos CC, Cassano V, Nunes JMC (2020) Diversity of Galaxauraceae (Nemaliales, Rhodophyta) in northeastern Brazil: new record and two new species, Dichotomaria viridis sp. nov. and Tricleocarpa laxa sp. Phytotaxa. https://doi.org/10.11646/phytotaxa.454.2.1

  • Schupp PJ, Paul VJ (1993) Calcium Carbonate and Secondary Metabolites in Tropical Seaweeds: variable effects on herbivorous fishes. Ecol.https://doi.org/10.2307/1939440

  • Sheu J, Huang S, Wang G, Duh C (1997) Study on Cytotoxic Oxygenated Desmosterols Isolated from the Red Alga Galaxaura marginata. J Nat Prod.https://doi.org/10.1021/np9701844

  • Smith AM, Sutherland JE, Kregting L, Farr TJ, Winter DJ (2012) Phylomineralogy of the coralline red algae: correlation of skeletal mineralogy with molecular phylogeny. Phytochem.https://doi.org/10.1016/j.phytochem.2012.06.003

  • Solandt J, Campbell AC (2001) Macroalgal feeding characteristics of the sea urchin Diadema antillarum Philippi at Discovery Bay, Jamaica. Caribb J Sci 37:227–238

    Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. Biosci. https://doi.org/10.1641/B570707

    Article  Google Scholar 

  • Swanson RL, Nys R, Huggett MJ, Green JK, Steinberg PD (2006) In situ quantification of a natural settlement cue and recruitment of the Australian sea urchin Holopneustes purpurascens. Mar Ecol Prog Ser 314:1–14

    Article  Google Scholar 

  • Taniguchi K, Kurata K, Maruzoi T, Suzuki M (1994) Dibromomethane, a Chemical Inducer of Larval Settlement and Metamorphosis of the Sea Urchin Strongylocentrotus nudus. Fisheries SCI 60:795–796

    Article  CAS  Google Scholar 

  • Tebben J, Motti CA, Siboni N, Tapiolas DM, Negri AP, Schupp PJ, Kitamura M, Hatta M, Steinberg PD, Harder T (2015) Chemical mediation of coral larval settlement by crustose coralline algae. Sci Rep-Uk. https://doi.org/10.1038/srep10803

    Article  Google Scholar 

  • Teixeira CD, Chiroque-Solano PM, Ribeiro FV, Carlos-Junior LA, Neves LM, Salomon OS, Salgado LT, Falsarella LN, Cardoso GO, Villela LV, Freitas MO, Moraes FC, Bastos AC, Moura RL (2021) Decadal (2006-2018) dynamics of Southwestern Atlantic’s largest turbid zone reefs. Plos One.https://doi.org/10.1371/journal.pone.0247111

  • Teixeira VL (2013) Marine Natural Products from Seaweeds. RVQ.https://doi.org/10.5935/1984-6835.20130033

  • Thornber CS, Jones E, Stachowicz JJ (2008) Differences in herbivore feeding preferences across a vertical rocky intertidal gradient. Mar Ecol Prog Ser.https://doi.org/10.3354/meps07406

  • Thurber RV, Burkepile DE, Correa AMS, Thurber AR, Shantz AA, Welsh R, Pritchard C, Rosales S (2012) Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides. Plos One. https://doi.org/10.1371/journal.pone.0044246

  • Wang R, Tang X (2016) Allelopathic effects of macroalga Corallina pilulifera on the red-tide forming alga Heterosigma akashiwo under laboratory conditions. Chin J Oceanol Limnol.https://doi.org/10.1007/s00343-015-4336-y

  • Wang R, **ao H, Zhang P, Qu L, Cai H, Tang X (2007) Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense. J Appl Phycol. https://doi.org/10.1007/s10811-006-9117-8

  • Watson DC, Norton TA (1985) Dietary Preferences of The Common Periwinkle, Littorea (L.). J Exp Mar Biol. https://doi.org/10.1016/0022-0981(85)90230-8

  • Whittaker RH, Feeny PP (1971) Allelochemics: Chemical Interactions between Species. Sci. 757

  • Woelkerling WJ, Irvine LM, Harvey AS (1993) Growth-forms in Non-geniculate Coralline Red Algae (Corallinales, Rhodophyta). Aust Syst Bot. https://doi.org/10.1071/SB9930277

Download references

Acknowledgments

We would like to thank the Federal University of State of Rio de Janeiro (UNIRIO) and the Graduate Program in Biological Science (PPGBIO), as well as the Federal University of Rio de Janeiro (UFRJ) and Graduate Program in Vegetable Biotechnology and Bioprocesses (PBV) for the facilities and support. Moreover, we thank the Laboratory of Biology and Taxonomy of Algae (LABIOTAL -UNIRIO), Laboratory of Phytochemistry and Pharmacognosy (FitoFar – UFRJ), and the funding agencies Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the doctoral, master’s and technical scholarships.

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) [grant number E-26/203.240/2017 to JCDP]; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [Finance Code 001]; Federal University of the State of Rio de Janeiro (UNIRIO); and Federal University of Rio de Janeiro (UFRJ).

Author information

Authors and Affiliations

Authors

Contributions

Amanda Cunha de Souza Coração, Brendo Araujo Gomes, Joel Campos de Paula contributed to the study conception and design. Material preparation, literature search and data analysis were performed by Amanda Cunha de Souza Coração, Brendo Araujo Gomes, Amanda Mendonça Chyaromont, Ana Christina Pires Lannes-Vieira, Erick Alves Pereira Lopes-Filho, Ana Prya Bartolo Gomes, Suzana Guimarães Leitão, Valéria Laneuville Teixeira, Joel Campos de Paula. The first draft of the manuscript was written by Amanda Cunha de Souza Coração and all authors commented on previous versions of the manuscript. Joel Campos de Paula and Valéria Laneuville Teixeira critically revised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amanda Cunha De Souza Coração.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Souza Coração, A.C., Gomes, B.A., Chyaromont, A.M. et al. How the Ecology of Calcified Red Macroalgae is Investigated under a Chemical Approach? A Systematic Review and Bibliometric Study. J Chem Ecol (2024). https://doi.org/10.1007/s10886-024-01525-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10886-024-01525-7

Keywords

Navigation