Log in

The Oxylipin Signaling Pathway Is Required for Increased Aphid Attraction and Retention on Virus-Infected Plants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Many studies have shown that virus infection alters phytohormone signaling and insect vector contact with hosts. Increased vector contact and movement among plants should increase virus survival and host range. In this study we examine the role of virus-induced changes in phytohormone signaling in plant-aphid interactions, using Pea enation mosaic virus (PEMV), pea aphids (Acyrthosiphon pisum), and pea (Pisum sativum) as a model. We observed that feeding by aphids carrying PEMV increases salicylic acid and jasmonic acid accumulation in pea plants compared to feeding by virus-free aphids. To determine if induction of the oxylipin jasmonic acid is critical for aphid settling, attraction, and retention on PEMV-infected plants, we conducted insect bioassays using virus-induced gene silencing (VIGS), an oxylipin signaling inducer, methyl jasmonate (MeJA), and a chemical inhibitor of oxylipin signaling, phenidone. Surprisingly, there was no impact of phenidone treatment on jasmonic acid or salicylic acid levels in virus-infected plants, though aphid attraction and retention were altered. These results suggest that the observed impacts of phenidone on aphid attraction to and retention on PEMV-infected plants are independent of the jasmonic acid and salicylic acid pathway but may be mediated by another component of the oxylipin signaling pathway. These results shed light on the complexity of viral manipulation of phytohormone signaling and vector-plant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe H, Tomitaka Y, Shimoda T, Seo S, Sakurai T, Kugimiya S, Tsuda S, Kobayashi M (2012) Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus. Plant Cell Physiol 53:204–212

    Article  CAS  PubMed  Google Scholar 

  • Adio AM, Casteel CL, de Vos M, Kim JH, Joshi V, Li B, Juéry C, Daron J, Kliebenstein DJ, Jander G (2011) Biosynthesis and defensive function of Nδ-Acetylornithine, a jasmonate-induced arabidopsis metabolite. Plant Cell 23:3303–3318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agudelo-Romero P, Carbonell P, Perez-Amador MA, Elena SF (2008) Virus adaptation by manipulation of host’s gene expression. PLoS One 3:e2397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alazem M, Lin NS (2015) Roles of plant hormones in the regulation of host-virus interactions. Mol Plant Pathol 16:529–540

    Article  CAS  PubMed  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544

    Article  PubMed  Google Scholar 

  • Bak A, Cheung AL, Yang C, Whitham SA, Casteel CL (2017) A viral protease relocalizes in the presence of the vector to promote vector performance. Nat Commun 8:1–10

    Article  CAS  Google Scholar 

  • Bak A, Patton MF, Perilla-Henao LM, Aegerter BJ, Casteel CL (2019) Ethylene signaling mediates potyvirus spread by aphid vectors. Oecologia 190:139

    Article  PubMed  Google Scholar 

  • Bates D, Mächler M, Zurich E, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bera S, Fraile A, García-Arenal F (2018) Analysis of fitness trade-offs in the host range expansion of an RNA virus, Tobacco mild green mosaic virus. J Virol 92:1–15

    Article  Google Scholar 

  • Blanc S, Michalakis Y (2016) Manipulation of hosts and vectors by plant viruses and impact of the environment. Curr Opin Insect Sci 16:36–43

    Article  PubMed  Google Scholar 

  • Casteel CL, De Alwis M, Bak A, Dong H, Whitham SA, Jander G (2015) Disruption of ethylene responses by Turnip mosaic virus mediates suppression of plant defense against the green peach aphid vector. Plant Physiol 169:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casteel CL, Yang C, Nanduri AC, De Jong HN, Whitham SA, Jander G (2014) The NIa-pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant J 77:653–663

    Article  CAS  PubMed  Google Scholar 

  • Cervera H, Ambros S, Bernet GP, Rodrigo G, Elena SF (2018) Viral fitness correlates with the magnitude and direction of the perturbation induced in the host’s transcriptome: the Tobacco etch potyvirus’ tobacco case study. Mol Biol Evol 35:1599–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Signal Behav 4:493–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesnais Q, Mauck KE, Bogaert F, Bamière A, Catterou M, Spicher F, Brault V, Tepfer M, Ameline A (2019) Virus effects on plant quality and vector behavior are species specific and do not depend on host physiological phenotype. J Pest Sci 92:791–804

    Article  Google Scholar 

  • Chisholm PJ, Eigenbrode SD, Clark RE, Basu S, Crowder DW (2019) Plant-mediated interactions between a vector and a non-vector herbivore promote the spread of a plant virus. Proc R Soc B Biol Sci 286:20191383

    Article  CAS  Google Scholar 

  • Chisholm PJ, Sertsuvalkul N, Casteel CL, Crowder DW (2018) Reciprocal plant-mediated interactions between a virus and a non-vector herbivore. Ecology 99:2139–2144

    Article  PubMed  Google Scholar 

  • Clark RE, Basu S, Lee BW, Crowder DW (2019) Tri-trophic interactions mediate the spread of a vector-borne plant pathogen. Ecology 100(11):e02879

    Article  PubMed  Google Scholar 

  • Claudel P, Chesnais Q, Fouché Q et al (2018) The aphid-transmitted turnip yellows virus differentially affects volatiles emission and subsequent vector behavior in two brassicaceae plants. Int J Mol Sci 19(8):2316

    Article  PubMed Central  CAS  Google Scholar 

  • Clement SL, Husebye DS, Eigenbrode SD (2010) Ecological factors influencing pea aphid outbreaks in the US Pacific northwest. In: Aphid biodiversity under environmental change. Springer Netherlands, pp 107–128

  • Constantin GD, Krath BN, Macfarlane SA, Nicolaisen M, Johansen IE, Lund OS (2004) Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J 40:622–631

    Article  CAS  PubMed  Google Scholar 

  • Demler SA, Borkhsenious ON, Rucker DG, De Zoeten GA (1994) Assessment of the autonomy of replicative and structural functions encoded by the luteo-phase of Pea enation mosaic virus. J Gen Virol 75:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Demler SA, Rucker-Feeney DG, Skaf JS, De Zoeten GA (1997) Expression and suppression of circulative aphid transmission in pea enation mosaic virus. J Gen Virol 78:511–523

    Article  CAS  PubMed  Google Scholar 

  • dos Santos RC, Peñaflor MFGV, Sanches PA, Nardi C, Bento JMS (2016) The effects of Gibberella zeae, Barley yellow dwarf virus, and co-infection on Rhopalosiphum padi olfactory preference and performance. Phytoparasitica 44:47–54

    Article  Google Scholar 

  • Doumayrou J, Sheber M, Bonning BC, Allen Miller W (2016) Role of Pea enation mosaic virus coat protein in the host plant and aphid vector. Viruses 8(11):312

    Article  PubMed Central  CAS  Google Scholar 

  • Eigenbrode SD, Bosque-Pérez NA, Davis TS (2018) Insect-borne plant pathogens and their vectors: ecology, evolution, and complex interactions. Annu Rev Entomol 63:169–191

    Article  CAS  PubMed  Google Scholar 

  • Eigenbrode SD, Ding H, Shiel P, Berger PH (2002) Volatiles from potato plants infected with Potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc R Soc B Biol Sci 269:455–460

    Article  CAS  Google Scholar 

  • Fraile A, Escriu F, Aranda MA, Malpica JM, Gibbs AJ, Garcia-Arenal F (1997) A century of tobamovirus evolution in an Australian population of Nicotiana glauca. J Virol 71:8316–8320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraile A, García-Arenal F (2018) Tobamoviruses as models for the study of virus evolution. Adv Virus Res 102:89–117

    Article  CAS  PubMed  Google Scholar 

  • Hillung J, García-García F, Dopazo J, Cuevas JM, Elena SF (2016) The transcriptomics of an experimentally evolved plant-virus interaction. Sci Rep 6:1–19

    Article  CAS  Google Scholar 

  • Hodge S, Powell G (2010) Conditional facilitation of an aphid vector, Acyrthosiphon pisum , by the plant pathogen, Pea enation mosaic virus. J Insect Sci 10:1–14

    Article  Google Scholar 

  • Hogenhout SA, Ammar E-D, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    Article  CAS  PubMed  Google Scholar 

  • Ingwell LL, Eigenbrode SD, Bosque-pe NA (2012) Plant viruses alter insect behavior to enhance their spread. Sci Rep 2:578

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Martínez ES, Bosque-Pérez NA, Berger PH, Zemetra RS, Ding H, Eigenbrode SD (2004) Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley yellow dwarf virus–infected transgenic and untransformed wheat. Environ Entomol 33:1207–1216

    Article  Google Scholar 

  • Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    Article  CAS  PubMed  Google Scholar 

  • Li P, Liu H, Li F, Liao X, Ali S, Hou M (2018) A virus plays a role in partially suppressing plant defenses induced by the viruliferous vectors. Sci Rep 8:1–8

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real- time quantitative PCR and the 2 Ϫ Ϫ Ct method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Mai VC, Drzewiecka K, Jelen H, Narozna D, Rucinska-Sobkowiak R, Kesyg J, Floryszak-Wieczorek J, Gabrys B, Morkunas I (2014) Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci 222:1–12

    Article  CAS  Google Scholar 

  • Mauck K, Bosque-Pérez NA, Eigenbrode SD, De Moraes CM, Mescher MC (2012) Transmission mechanisms shape pathogen effects on host-vector interactions: evidence from plant viruses. Funct Ecol 26:1162–1175

    Article  Google Scholar 

  • Mauck KE, Chesnais Q, Shapiro LR (2018) Evolutionary determinants of host and vector manipulation by plant viruses. Adv Virus Res 101:189–250

    Article  PubMed  Google Scholar 

  • Morkunas I, Van MC, Gabrys’ BG (2011) Phytohormonal signaling in plant responses to aphid feeding. Acta Physiol Plant 33:2057–2073

    Article  CAS  Google Scholar 

  • Mwando NL, Tamiru A, Nyasani JO, Obonyo MAO, Caulfield JC, Bruce TJA, Subramanian S (2018) Maize chlorotic mottle virus induces changes in host plant volatiles that attract vector Thrips species. J Chem Ecol 44:681–689

    Article  CAS  PubMed  Google Scholar 

  • Pagan I, Holmes EC (2010) Long-term evolution of the Luteoviridae : time scale and mode of virus speciation. J Virol 84:6177–6187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patton MF, Bak A, Sayre JM, Heck ML, Casteel CL (2019) A polerovirus, Potato leafroll virus, alters plant–vector interactions using three viral proteins. Plant Cell Environ 43:387–399

    Article  PubMed  CAS  Google Scholar 

  • Rajabaskar D, Bosque-Pérez NA, Eigenbrode SD (2014) Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Res 186:32–37

    Article  CAS  PubMed  Google Scholar 

  • Safari M, Ferrari MJ, Roossinck MJ (2019) Manipulation of aphid behavior by a persistent plant virus. J Virol 93:e01781–e01718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Arcos C, Reichelt M, Gershenzon J, Kunert G (2016) Modulation of legume defense signaling pathways by native and non-native pea aphid clones. Front Plant Sci 7:1872

    Article  PubMed  PubMed Central  Google Scholar 

  • Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC (2013) Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int J Mol Sci 14:17781–17811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuman MC, Meldau S, Gaquerel E, Diezel C, McGale E, Greenfield S, Baldwin IT (2018) The active jasmonate JA-Ile regulates a specific subset of plant jasmonate-mediated resistance to herbivores in nature. Front Plant Sci 9:787

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharifi R, Lee SM, Ryu CM (2017) Microbe-induced plant volatiles. New Phytol 220:684–691

    Article  PubMed  Google Scholar 

  • Shine MB, Yang JW, El-Habbak M, Nagyabhyru P, Fu DQ, Navarre D, Ghabrial S, Kachroo P, Kachroo A (2016) Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytol 212:627–636

    Article  CAS  PubMed  Google Scholar 

  • Sisterson MS (2008) Effects of insect-vector preference for healthy or infected plants on pathogen spread: insights from a model. J Econ Entomol 101:1–8

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman and Company, New York, NY

    Google Scholar 

  • Verheggen FJ, Arnaud L, Bartram S, Gohy M, Haubruge E (2008) Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly. J Chem Ecol 34:301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Han K, Peng J, Zhao J, Jiang L, Lu Y, Zheng H, Lin L, Chen J, Yan F (2019) NbALD1 mediates resistance to turnip mosaic virus by regulating the accumulation of salicylic acid and the ethylene pathway in Nicotiana benthamiana. Mol Plant Pathol 20:990–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster B, Bruce T, Dufour S, Birkemeyer C, Birkett M, Hardie J, Pickett J (2008a) Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. J Chem Ecol 34:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Webster B, Bruce T, Pickett J, Hardie J (2008b) Olfactory recognition of host plants in the absence of host-specific volatile compounds. Commun Integr Biol 1:167–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei J, Kang L (2011) Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signal Behav 6:369–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner BJ, Mowry TM, Bosque-Pérez NA, Ding H, Eigenbrode SD (2009) Changes in green peach aphid responses to Potato Leafroll Virus–induced volatiles emitted during disease progression. Environ Entomol 38:1429–1438

    Article  CAS  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Qi T, Li WX, Tian H, Gao H, Wang J, Ge J, Yao R, Ren C, Wang XB, Liu Y, Kang L, Ding SW, **e D (2017) Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Res 27:402–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Davis TS, Eigenbrode SD (2014) Aphid behavioral responses to virus-infected plants are similar despite divergent fitness effects. Entomol Exp Appl 153:246–255

    Article  Google Scholar 

  • Xu HX, Qian LX, Wang XW, Shao RX, Hong Y, Liu SS, Wang XW (2019) A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc Natl Acad Sci U S A 116:490–495

    Article  CAS  PubMed  Google Scholar 

  • Zhang PJ, He YC, Zhao C, Ye ZH, Yu XP (2018) Jasmonic acid-dependent defenses play a key role in defending tomato against Bemisia tabaci nymphs, but not adults. Front Plant Sci 9:1065

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang PJ, Wei JN, Zhao C, Zhang YF, Li CY, Liu SS, Dicke M, Yu XP, Turlings TCJ (2019) Airborne host–plant manipulation by whiteflies via an inducible blend of plant volatiles. Proc Natl Acad Sci U S A 116:7387–7396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ida Elisabeth Johansen and Dr. Alan Miller for providing constructs, and Leilani Jones and the many undergraduates that helped maintain plants and insects. This work was supported by USDA-NIFA award 2017-67013-26537.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Casteel.

Electronic supplementary material

ESM 1

Supplemental Fig. 1 There was a decrease in relative transcript abundance of Coi1 in silenced plants using VIGS. **denotes P < 0.01, significant difference by t-test. Supplemental Fig. 2 Ten virus-free aphids were kept on phenidone-treated or untreated healthy plants, with access to an untreated healthy plant in the same pot for 24 h. Phenidone treatment on healthy plants had no effect on aphid migration off the healthy plant. Mean ± SE of N = 8. Supplemental Fig. 3 Jasmonic acid levels in Pisum sativum plants after induction with methyl jasmonate (MeJA) or MeJA and phenidone. Phenidone reduced MeJA induction of jasmonic acid. **denotes P < 0.01, significant difference by LSD test. Mean ± SE of N = 19. (PDF 195 kb) (PDF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, S., Blundell, R., Liang, D. et al. The Oxylipin Signaling Pathway Is Required for Increased Aphid Attraction and Retention on Virus-Infected Plants. J Chem Ecol 46, 771–781 (2020). https://doi.org/10.1007/s10886-020-01157-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-020-01157-7

Keywords

Navigation