Log in

Propagation Phenomena for a Discrete Diffusive Predator–Prey Model in a Shifting Habitat

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper concerns a discrete diffusive predator–prey system involving two competing predators and one prey in a shifting habitat induced by the climate change. By assuming that both predators can increase when the prey is at the maximal capacity and the prey can still survive under optimal climatic conditions when these two predators have their maximal densities, we investigate the existence and non-existence for different types of forced traveling waves which describe the conversion from the state of a saturated aboriginal prey with two invading alien predators, an aboriginal co-existent predator–prey with an invading alien predator, and the coexistence of three species to the extinction state, respectively. The existence of supercritical and critical forced waves is showed by applying Schauder’s fixed point theorem on various invariant cones via constructing different types of generalized super- and sub-solutions while the non-existence of subcritical forced waves is obtained by contradiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Berestycki, H., Fang, J.: Forced waves of the Fisher-KPP equation in a shifting environment. J. Differ. Equ. 264, 2157–2183 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berestycki, H., Rossi, L.: Reaction–diffusion equations for population dynamics with forced speed. II. Cylindrical-type domains. Discret. Contin. Dyn. Syst. 25, 19–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Diekmann, O., Nagelkerke, C., Zegeling, P.: Can a species keep pace with a shifting climate? Bull. Math. Biol. 71, 399–429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berestycki, H., Desvillettes, L., Diekmann, O.: Can climate change lead to gap formation? Ecol. Complex. 20, 264–270 (2014)

    Article  Google Scholar 

  5. Chen, X., Guo, J.-S.: Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann. 326, 123–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Choi, W., Guo, J.-S.: Forced waves of a three species predator–prey system in a shifting environment. J. Math. Anal. Appl. 514, 126283 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choi, W., Giletti, T., Guo, J.-S.: Persistence of species in a predator–prey system with climate change and either nonlocal or local dispersal. J. Differ. Equ. 302, 807–853 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coville, J.: Can a population survive in a shifting environment using non-local dispersion? Nonlinear Anal. 212, 112416 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Leenheer, P., Shen, W., Zhang, A.: Persistence and extinction of nonlocal dispersal evolution equations in moving habitats. Nonlinear Anal. Real World Appl. 54, 103110 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, F.-D., Li, B., Li, W.-T.: Forced waves in a Lotka–Volterra diffusion-competition model with a shifting habitat. J. Differ. Equ. 276, 433–459 (2021)

    Article  MATH  Google Scholar 

  11. Dong, F.-D., Li, W.-T., Wang, J.-B.: Propagation phenomena for a nonlocal dispersal Lotka–Volterra competition model in shifting habitats. J. Dyn. Differ. Equ. (2022). https://doi.org/10.1007/s10884-021-10116-z

    Article  Google Scholar 

  12. Du, Y., Hu, Y., Liang, X.: A climate shift model with free boundary: enhanced invasion. J. Dyn. Differ. Equ. (2021). https://doi.org/10.1007/s10884-021-10031-3

    Article  Google Scholar 

  13. Ducrot, A., Guo, J.-S., Lin, G., Pan, S.: The spreading speed and the minimal wave speed of a predator–prey system with nonlocal dispersal. Z. Angew. Math. Phys. 70, 146 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fang, J., Peng, R., Zhao, X.-Q.: Propagation dynamics of a reaction–diffusion equation in a time-periodic shifting environment. J. Math. Pures Appl. 147, 1–28 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, J.-S., Hamel, F., Wu, C.-C.: Forced waves for a three-species predator-prey system with nonlocal dispersal in a shifting environment. ar**v:2202.08089v1

  16. Hu, C., Li, B.: Spatial dynamics for lattice differential equations with a shifting habitat. J. Differ. Equ. 259, 1967–1989 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, H., Zou, X.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145, 4763–4771 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, M., Wu, S.-L., Zhao, X.-Q.: Propagation dynamics for time-periodic and partially degenerate reaction–diffusion systems. SIAM J. Math. Anal. 54, 1860–1897 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, B., Bewick, S., Shang, J., Fagan, W.F.: Persistence and spread of a species with a shifting habitat edge. SIAM J. Appl. Math. 5, 1397–1417 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, W.-T., Wang, J.-B., Zhao, X.-Q.: Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J. Nonlinear Sci. 28, 1189–1219 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meng, Y., Yu, Z., Zhang, S.: Spatial dynamics of the lattice Lotka–Volterra competition system in a shifting habitat. Nonlinear Anal. Real World Appl. 60, 103287 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pan, L.-Y., Wu, S.-L.: Propagation dynamics for lattice differential equations in a time-periodic shifting habitat. Z. Angew. Math. Phys. 72, 93 (2021)

    Article  MathSciNet  Google Scholar 

  23. Qiao, S.-X., Li, W.-T., Wang, J.-B.: Multi-type forced waves in nonlocal dispersal KPP equations with shifting habitats. J. Math. Anal. Appl. 505, 125504 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.M., Hoegh-Guldberg, O., Bairlein, F.: Ecological responses to recent climate change. Nature 416, 389–395 (2002)

    Article  Google Scholar 

  25. Wang, J.-B., Li, W.-T.: Wave propagation for a cooperative model with nonlocal dispersal under worsening habitats. Z. Angew. Math. Phys. 71, 147 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, J.-B., Wu, C.: Forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats. Nonlinear Anal. Real World Appl. 58, 103208 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, J.-B., Zhao, X.-Q.: Uniqueness and global stability of forced waves in a shifting environment. Proc. Am. Math. Soc. 147, 1467–1481 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, H., Pan, C., Ou, C.: Existence of forced waves and gap formations for the lattice Lotka–Volterra competition system in a shifting environment. Appl. Math. Lett. 106, 106349 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, H., Pan, C., Ou, C.: Existence, uniqueness and stability of forced waves to the Lotka–Volterra competition system in a shifting environment. Stud. Appl. Math. 148, 186–218 (2022)

    Article  MathSciNet  Google Scholar 

  30. Wang, J.-B., Li, W.-T., Dong, F.-D., Qiao, S.-X.: Recent developments on spatial propagation for diffusion equations in shifting environments. Discret. Contin. Dyn. Syst. Ser. B 27, 5101–5127 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, S.-L., Huang, M.: Time periodic traveling waves for a periodic nonlocal dispersal model with delay. Proc. Am. Math. Soc. 148, 4405–4421 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, C., Xu, Z.: Propagation dynamics in a heterogeneous reaction–diffusion system under a shifting environment. J. Dyn. Differ. Equ. (2021). https://doi.org/10.1007/s10884-021-10018-0

    Article  Google Scholar 

  33. Wu, C., Wang, Y., Zou, X.: Spatial–temporal dynamics of a Lotka–Volterra competition model with nonlocal dispersal under shifting environment. J. Differ. Equ. 267, 4890–4921 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yuan, Y., Zou, X.: Spatial–temporal dynamics of a diffusive Lotka–Volterra competition model with a shifting habitat II: case of faster diffuser being a weaker competitor. J. Dyn. Differ. Equ. 33, 2091–2132 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yuan, Y., Wang, Y., Zou, X.: Spatial dynamics of a Lotka–Volterra model with a shifting habitat. Discret. Contin. Dyn. Syst. Ser. B 24, 5633–5671 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Zeidler, E.: Nonlinear Functional Analysis and its Applications, I: Fixed-Point Theorems. Springer, New York (1986)

    Book  MATH  Google Scholar 

  37. Zhang, G.-B., Zhao, X.-Q.: Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat. J. Differ. Equ. 268, 2852–2885 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhu, J.-L., Wang, J.-B., Dong, F.-D.: Spatial propagation for the lattice competition system in moving habitats. Z. Angew. Math. Phys. 73, 92 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for the valuable comments and suggestions which improved the presentation of this manuscript. This work was supported in part by the National Natural Science Foundation of China (12271494, 11901543) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGSX01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Bing Wang.

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JB., Zhu, JL. Propagation Phenomena for a Discrete Diffusive Predator–Prey Model in a Shifting Habitat. J Dyn Diff Equat (2022). https://doi.org/10.1007/s10884-022-10223-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-022-10223-5

Keywords

Mathematics Subject Classification

Navigation