Log in

Rigidity of Fibonacci Circle Maps with a Flat Piece and Different Critical Exponents

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We consider order preserving \(C^3\) circle maps with a flat piece, Fibonacci rotation number, and negative Schwarzian derivative where the critical exponents (the degrees of the singularities at the boundary of the flat piece) might be different.This paper treats the rigidity (geometrical) characteristic of a map of our class. We prove that when the critical exponents belong to \((1,2)^2\), the geometry of the system is degenerate (double exponentially fast). As a consequence, the renormalization diverges, and the rigidity (geometric) class depends on three ordered pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. $$\begin{aligned} Dim_HK_f:=\inf _{s\ge 0}\left\{ H_s(K_f):=\inf _{\delta >0}\left\{ \sum |U_i|^{s},\; K_f\subset \cup U_i,\;\;|U_i|<\delta \right\} =0\right\} . \end{aligned}$$

References

  1. Martens SSMWM, Mendes P. On cherry flows. Erg Th Dyn Sys. 1990;10:531–54. https://doi.org/10.1017/S0143385700005733.

    Article  MathSciNet  Google Scholar 

  2. Palmisano L. A phase transition for circle maps and cherry flows. Commun Math Phys. 2013;321:135–55. https://doi.org/10.1007/s00220-013-1685-2.

    Article  MathSciNet  Google Scholar 

  3. Misiurewicz M. Rotation interval for a class of maps of the real line into itself. Erg Th Dyn Sys. 1986;6:17–132. https://doi.org/10.1017/S0143385700003321.

    Article  MathSciNet  Google Scholar 

  4. Şwiátek G. Rational rotation numbers for maps of the circle. Comm Math Phys. 1988;119:109–28. https://doi.org/10.1007/BF01218263.

    Article  MathSciNet  Google Scholar 

  5. Poincaré JH. Mémoire sur les courbes définies par une équation différentielle (i). J Math Pures Appl. 1881;7(3):375–422.

    Google Scholar 

  6. Melo W, Van Strien S. One dimensional dynamics. Berlin: Springer; 1993.

    Book  Google Scholar 

  7. Martens M, Palmisano L. Invariant manifolds for non-differentiable operators. Trans Amer Math Soc. 2022;375:1101–69. https://doi.org/10.1090/tran/8493.

    Article  MathSciNet  Google Scholar 

  8. Yoccoz J-C. Conjugaison différentiable des difféomorphimes du cercle dont le nombre de rotation vérifie une condiontion diophantienne. Ann Sci École Norm Sup. 1984;17:333–359. https://doi.org/10.24033/ASENS.1475

  9. Herman MR. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ Math IHES. 1979;49:5–233. https://doi.org/10.1007/BF02684798.

    Article  Google Scholar 

  10. Faria E, Melo W. Rigidity of critical circle map**s i. J Eur Math Soc. 1999;1:339–92. https://doi.org/10.1007/s100970050011.

    Article  MathSciNet  Google Scholar 

  11. Yampolsky M. Hyperbolicity of renormalization of critical circle maps. Publ Math IHE. 2003;96:1–41. https://doi.org/10.1007/S10240-003-0007-1.

    Article  Google Scholar 

  12. Guarino MMP, Melo W. Rigidity of critical circle maps. Duke Math J. 2018;167:2125–88. https://doi.org/10.1007/s00574-013-0027-5.

    Article  MathSciNet  Google Scholar 

  13. Artur A. On rigidity of critical circle. B Braz Math Soc. 2013;44:611–9. https://doi.org/10.1007/s001090000086.

    Article  MathSciNet  Google Scholar 

  14. McMullen CT. Renormalization and 3-manifolds Which Fiber over the Circle. New Jersey, PUP; 1996.

  15. Melo W, Pinto AA. Rigidity of \(c^2\) infinitely renormalizable unimodal maps. Comm Math Phys. 1999;208:91–105.

    Article  MathSciNet  Google Scholar 

  16. Faria dMW E, Pinto A. Global hyperbolicity of renormalization for \(c^r\) unimodal map**s. Ann Math. 2006;164:731–824. https://doi.org/10.4007/annals.2006.164.731.

  17. Khanin K, Kocić S. Renormalization conjecture and rigidity theory for circle diffeomorphisms with breaks. Geom Func Anal. 2014;24:2002–28. https://doi.org/10.1007/s00039-014-0309-0.

    Article  MathSciNet  Google Scholar 

  18. Khanin K, Teplinsky A. Robust rigidity for circle diffeomorphisms with singularities. Geom Func Anal. 2014;24:2002–28. https://doi.org/10.1007/s00039-014-0309-0.

    Article  Google Scholar 

  19. Mostow GD. Quasi-conformal map**s in \(n\)-space and the rigidity of hyperbolic space forms. Publ Math IHES. 1968;34:53–104. https://doi.org/10.1007/BF02684590.

    Article  MathSciNet  Google Scholar 

  20. Yilun S, Yamei Y. Fixed-time group tracking control with unknown inherent nonlinear dynamics. IEEE Access. 2017;5:12833–42. https://doi.org/10.1109/ACCESS.2017.2723462.

    Article  Google Scholar 

  21. Graczyk J, Jonker LB, światek G, Tangerman FM, Veerman JJP. Differentiable circle maps with a flat interval. Comm Math Phys. 1995;173:599–622. https://doi.org/10.1007/BF02101658.

  22. Melo W, Van Strien S. One-dimensional dynamics: The schwarzian derivative and beyond. Bull (New Series) Am Math Soc. 1988;18(2):159–162. https://doi.org/10.1090/S0273-0979-1988-15633-9.

  23. Yoccoz J-C. Il n’y a pas de contre-exemple de denjoy analytique. CR Acad Paris. 1984;298(1):141–4.

    MathSciNet  Google Scholar 

  24. Graczyk J. Dynamics of circle maps with flat spots. Fundam Math. 2010;209(3):267–90.

    Article  MathSciNet  Google Scholar 

  25. Tangue NB. Cherry maps with different critical exponents: Bifurcation of geometry. Rus J Nonlin Dyn. 2020;16:651–672. https://doi.org/10.20537/nd200409

  26. Palminsano L, Tangue NB. A phase transition for circle maps with a flat spot and different critical exponents. DCDS. 2021;41:5037–55. https://doi.org/10.3934/DCDS.2021067.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee whose valuable comments helped to improve the exposition of the paper. I sincerely thank Prof. M. Martens and Prof. Dr. L. Palmisano for introducing me (at Institute of Mathematics and Physical Sciences (IMSP)) to the subject of this paper, for valuable advice, continuous encouragement and helpful discussions. Part of the research for this paper took place at National Advanced School of Engineering, Yaounde (ENSPY) and University of Dauala (UD). The author would like to thank the IMSP, ENSPY, UD, and in particular Prof. Ferdinand NGAKEU, Prof. Joel TOSSA, Prof. Carlos OGOUYANDJOU, Prof. Léonard TODJIHOUNDE, Prof. Thomas BOUETOU BOUETOU, Prof. Bridinette THIODJIO SENDJA, épse FAN DIO, Prof. Louis Aimé FONO and Prof. Anatole TEMGOUA for continuous encouragement or their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertuel TANGUE NDAWA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

To the memory of my Dad NDAWA Joseph.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

NDAWA, B.T. Rigidity of Fibonacci Circle Maps with a Flat Piece and Different Critical Exponents. J Dyn Control Syst (2024). https://doi.org/10.1007/s10883-024-09687-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10883-024-09687-z

Keywords

Mathematics Subject Classification (2010)

Navigation