Log in

Local Fields of Extremals for Optimal Control Problems with State Constraints of Relative Degree 1

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract.

A local embedding of a boundary arc into a field of extremals is constructed for single-input optimal control problems with state space constraints given by control-invariant manifolds of relative degree 1. The strong local optimality of the reference trajectory is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. A. Agrachev, G. Stefani, and P. L. Zezza, Strong optimality for a bangbang trajectory. SIAM J. Control Optim. 41 (2002), 991–1014.

    Article  MATH  MathSciNet  Google Scholar 

  2. 2. L. Berkovitz, Optimal control theory. Springer-Verlag (1974).

    MATH  Google Scholar 

  3. 3. V. G. Boltyanskii, Sufficient conditions for optimality and the justification of the dynamic programming principle. SIAM J. Control Optim. 4 (1966), 326–361.

    Article  MathSciNet  Google Scholar 

  4. 4. B. Bonnard, L. Faubourg, G. Launay, and E. Trélat, Optimal control with state space constraints and the space shuttle re-entry problem. J. Dynam. Control Systems 9 (2003), 155–199.

    Article  MATH  MathSciNet  Google Scholar 

  5. 5. A. Cernea and H. Frankowska, The connection between the maximum principle and the value function for optimal control problems under state constraints. Proc. 43 IEEE Conf. on Decision and Control, Nassau, The Bahamas (2004), pp. 893–898.

    Google Scholar 

  6. 6. L. Cesari, Optimization. Theory and Applications. Springer-Verlag, New York (1983).

    MATH  Google Scholar 

  7. 7. M. G. Crandall and P. L. Lions, Viscosity solutions to Hamilton–Jacobi equations. Trans. Amer. Math. Soc. 277 (1983), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  8. 8. H. Frankowska, Regularity of minimizers and of adjoint states in optimal control under state constraints. Convex Anal. 13 (2006), No. 2.

    MathSciNet  Google Scholar 

  9. 9. K. Grasse and H. J. Sussmann, Global controllability by nice controls. In: Nonlinear Controllability and Optimal Control (H. Sussmann, ed.), Marcel Dekker, New York (1990), pp. 33–79.

    Google Scholar 

  10. 10. M. d. R. de Pinho, M. M. Ferreira, U. Ledzewicz, and H. Schättler, A model for cancer chemotherapy with state constraints. Nonlinear Anal. 63 (2005), 2591–2602.

    Article  Google Scholar 

  11. 11. W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal control. Springer-Verlag, New York (1975).

    MATH  Google Scholar 

  12. 12. R. F. Hartl, S. P. Sethi, and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37 (1995), 181–218.

    Article  MATH  MathSciNet  Google Scholar 

  13. 13. A. D. Ioffe and V. M. Tihomirov, Theory of extremal problems. North-Holland, Amsterdam (1979).

    MATH  Google Scholar 

  14. 14. U. Ledzewicz and H. Schättler, Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy. J. Optim. Theory Appl. 114 (2002), 609–637.

    Article  MATH  MathSciNet  Google Scholar 

  15. 15. _______, Controlling a model for bone marrow dynamics in cancer chemotherapy. Math. Biosci. Engineering 1 (2004), 95–110.

    MATH  Google Scholar 

  16. 16. _______, A local field of extremals for single-input systems with state space constraints. Proc. 43 IEEE Conf. on Decision and Control, Nassau, The Bahamas (2004), pp. 923–928.

    Google Scholar 

  17. 17. K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control problems. Optimization 52 (2003), 75–91.

    Article  MATH  MathSciNet  Google Scholar 

  18. 18. H. Maurer, On optimal control problems with bounded state variables and control appearing linearly. SIAM J. Control Optim. 15 (1977), 345–362.

    Article  MATH  MathSciNet  Google Scholar 

  19. 19. H. Maurer, On the minimum principle for optimal control problems with state constraints. Schriftenreihe des Rechenzentrums der Universität Münster (1979).

    Google Scholar 

  20. 20. H. Maurer and N. Osmolovskii, Quadratic sufficient optimality conditions for bang-bang control problems. Control Cybernet. 33 (2003), 555–584.

    Google Scholar 

  21. 21. J. Noble and H. Schättler, Sufficient conditions for relative minima of broken extremals in optimal control theory. J. Math. Anal. Appl. 269, (2002), 98–128.

    Article  MATH  MathSciNet  Google Scholar 

  22. 22. B. Piccoli and H. Sussmann, Regular synthesis and sufficient conditions for optimality. SIAM J. Control Optim. 39 (2000), 359–410.

    Article  MATH  MathSciNet  Google Scholar 

  23. 23. L. S. Pontryagin, V. G. Boltyanskii, V. G. Gamkrelidze, and R. V. Mishchenko, Mathematical theory of optimal processes. Wiley-Interscience (1962).

    Google Scholar 

  24. 24. F. Rampazzo and R. Vinter, A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control. IMA J. Math. Control Inform. 16 (1999), 335–351.

    Article  MATH  MathSciNet  Google Scholar 

  25. 25. P. Rinaldi and H. Schättler, On optimal control problems with state space constraints arising in the design of bipolar transistors. In: Proc. 41 IEEE Conf. Decision and Control, Las Vegas (2002), pp. 4722–4727.

    Google Scholar 

  26. 26. H. Schättler, A local field of extremals near boundary-arc interior-arc junctions. Proc. 44 IEEE Conf. Decision and Control, Sevilla (2005), pp. 945–950.

    Google Scholar 

  27. 27. H. M. Soner, Optimal control with state-space constraints, I. SIAM J. Control Optim. 24 (1986), 552–561.

    Article  MATH  MathSciNet  Google Scholar 

  28. 28. H. Stalford, Sufficient conditions for optimal control with state and control constraints. J. Optim. Theory Appl. 7 (1971), 118–135.

    Article  MATH  MathSciNet  Google Scholar 

  29. 29. K. Suzuki, Optimum base-do** profile for minimum base transit time considering velocity saturation at base-collector junction and dependence of mobility and bandgap narrowing on do** concentration. IEEE Trans. Electron. Devices 48 (2001), No. 9, 2102–2107.

    Article  Google Scholar 

  30. 30. R. B. Vinter, Optimal control. Birkhäuser, Boston (2000).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Schättler.

Additional information

2000 Mathematics Subject Classification. 49N35, 49K15, 49L20.

Research was partially supported by the National Science Foundation under grants Nos. DMS-0305965 and DMS-0405848.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schättler, H. Local Fields of Extremals for Optimal Control Problems with State Constraints of Relative Degree 1. J Dyn Control Syst 12, 563–599 (2006). https://doi.org/10.1007/s10883-006-0005-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-006-0005-y

Key words and phrases.

Navigation