Log in

Exact combinatorial algorithms and experiments for finding maximum k-plexes

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We propose new practical algorithms to find maximum-cardinality k-plexes in graphs. A k-plex denotes a vertex subset in a graph inducing a subgraph where every vertex has edges to all but at most k vertices in the k-plex. Cliques are 1-plexes. In analogy to the special case of finding maximum-cardinality cliques, finding maximum-cardinality k-plexes is NP-hard. Complementing previous work, we develop exact combinatorial algorithms, which are strongly based on methods from parameterized algorithmics. The experiments with our freely available implementation indicate the competitiveness of our approach, for many real-world graphs outperforming the previously used methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Khzam FN, Collins RL, Fellows MR, Langston MA, Suters WH, Symons CT (2004) Kernelization algorithms for the Vertex Cover problem: Theory and experiments. In: Proc 6th ALENEX. ACM/SIAM, New York/Philadelphia, pp 62–69

    Google Scholar 

  • Abu-Khzam FN, Fellows MR, Langston MA, Suters WH (2007) Crown structures for vertex cover kernelization. Theory Comput Syst 41(3):411–430

    Article  MathSciNet  MATH  Google Scholar 

  • Balasundaram B, Butenko S, Trukhanov S (2005) Novel approaches for analyzing biological networks. J Comb Optim 10(1):23–39

    Article  MathSciNet  MATH  Google Scholar 

  • Balasundaram B, Butenko S, Hicks IV (2009) Clique relaxations in social network analysis: The maximum k-plex problem. Oper Res. doi:10.1287/opre.1100.0851. Available electronically

    Google Scholar 

  • Balasundaram B, Chandramouli S, Trukhanov S (2010) Approximation algorithms for finding and partitioning unit-disk graphs into co-k-plexes. Optim Lett 4:311–320

    Article  MathSciNet  MATH  Google Scholar 

  • Batagelj V, Mrvar A (2006) Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/, accessed January 2009

  • Beebe NH (2002) Nelson H.F. Beebe’s bibliographies page. http://www.math.utah.edu/~beebe/bibliographies.html

  • van Bevern R, Moser H, Niedermeier R (2011) Approximation and tidying—a problem kernel for s-plex cluster vertex deletion. Algorithmica. doi:10.1007/s00453-011-9492-7. Available electronically

    Google Scholar 

  • Bodlaender HL (2009) Kernelization: New upper and lower bound techniques. In: Proc 4th IWPEC. LNCS, vol 5917. Springer, Berlin, pp 17–37

    Google Scholar 

  • Chen ZZ, Fellows M, Fu B, Jiang H, Liu Y, Wand L, Zhu B (2010) A linear kernel for co-path/cycle packing. In: Proc 6th AAIM. LNCS, vol 6124. Springer, Berlin, pp 90–102

    Google Scholar 

  • Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin NE, MA Langston, Threadgill DW, Manly KF, Williams RW (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37(3):233–242

    Article  Google Scholar 

  • Dessmark A, Jansen K, Lingas A (1993) The maximum k-dependent and f-dependent set problem. In: Proc 4th ISAAC. LNCS, vol 762. Springer, Berlin, pp 88–97

    Google Scholar 

  • DIMACS (1995) Maximum clique, graph coloring, and satisfiability. Second DIMACS implementation challenge. http://dimacs.rutgers.edu/Challenges/, accessed November 2008

  • Djidev H, Garrido O, Levcopoulos C, Lingas A (1992) On the maximum k-dependent set problem. Tech Rep LU-CS-TR:92-91, Department of Computer Science, Lund University, Sweden

  • Downey RG, Fellows MR (1999) Parameterized complexity. Springer, Berlin

    Book  Google Scholar 

  • Fellows MR, Guo J, Moser H, Niedermeier R (2009) A generalization of Nemhauser and Trotter’s local optimization theorem. In: Proc 26th STACS, IBFI Dagstuhl, Germany. pp 409–420

    Google Scholar 

  • Fellows MR, Guo J, Moser H, Niedermeier R (2010) A generalization of Nemhauser and Trotter’s local optimization theorem. J Comput Syst Sci. doi:10.1016/j.jcss.2010.12.001. Available electronically

    Google Scholar 

  • Flum J, Grohe M (2006) Parameterized complexity theory. Springer, Berlin

    Google Scholar 

  • Grossman J, Ion P, Castro RD (2007) The Erdős number project. http://www.oakland.edu/enp/, accessed January 2009

  • Guo J, Niedermeier R (2007) Invitation to data reduction and problem kernelization. SIGACT News 38(1):31–45

    Article  Google Scholar 

  • Guo J, Moser H, Niedermeier R (2009) Iterative compression for exactly solving NP-hard minimization problems. In: Algorithmics of large and complex networks. LNCS, vol 5515. Springer, Berlin, pp 65–80

    Chapter  Google Scholar 

  • Guo J, Komusiewicz C, Niedermeier R, Uhlmann J (2010) A more relaxed model for graph-based data clustering: s-plex cluster editing. SIAM J Discrete Math 24(4):1662–1683

    Article  MathSciNet  MATH  Google Scholar 

  • Hüffner F, Niedermeier R, Wernicke S (2008) Techniques for practical fixed-parameter algorithms. Comput J 51(1):7–25

    Article  Google Scholar 

  • Hüffner F, Komusiewicz C, Moser H, Niedermeier R (2009) Isolation concepts for clique enumeration: Comparison and computational experiments. Theor Comput Sci 410(52):5384–5397

    Article  MATH  Google Scholar 

  • Hüffner F, Komusiewicz C, Moser H, Niedermeier R (2010) Fixed-parameter algorithms for cluster vertex deletion. Theory Comput Syst 47:196–217

    Article  MathSciNet  MATH  Google Scholar 

  • Ito H, Iwama K (2009) Enumeration of isolated cliques and pseudo-cliques. ACM Trans Algorithms 5(4):40 :1–21

    Article  MathSciNet  Google Scholar 

  • Jones B (2002) Computational geometry database. http://compgeom.cs.uiuc.edu/~jeffe/compgeom/biblios.html

  • Komusiewicz C, Hüffner F, Moser H, Niedermeier R (2009) Isolation concepts for efficiently enumerating dense subgraphs. Theor Comput Sci 410(38-40):3640–3654

    Article  MATH  Google Scholar 

  • Lewis JM, Yannakakis M (1980) The node-deletion problem for hereditary properties is NP-complete. J Comput Syst Sci 20(2):219–230

    Article  MathSciNet  MATH  Google Scholar 

  • McClosky B, Hicks IV (2010) Combinatorial algorithms for the maximum k-plex problem. J Comb Optim. doi:10.1007/s10878-010-9338-2. Available electronically

    Google Scholar 

  • Moser H (2009) Finding optimal solutions for covering and matching problems. PhD thesis, Institut für Informatik, Friedrich-Schiller Universität, Jena

  • Nemhauser GL, Trotter LE (1975) Vertex packings: Structural properties and algorithms. Math Program 8:232–248

    Article  MathSciNet  MATH  Google Scholar 

  • Niedermeier R (2006) Invitation to fixed-parameter algorithms. Oxford University Press, London

    Book  MATH  Google Scholar 

  • Niedermeier R, Rossmanith P (2000) A general method to speed up fixed-parameter-tractable algorithms. Inf Process Lett 73(3–4):125–129

    Article  MathSciNet  MATH  Google Scholar 

  • Nishimura N, Ragde P, Thilikos DM (2005) Fast fixed-parameter tractable algorithms for nontrivial generalizations of Vertex Cover. Discrete Appl Math 152(1–3):229–245

    Article  MathSciNet  MATH  Google Scholar 

  • Östergård PRJ (2002) A fast algorithm for the maximum clique problem. Discrete Appl Math 120(1–3):197–207

    Article  MathSciNet  MATH  Google Scholar 

  • Sanchis LA, Jagota A (1996) Some experimental and theoretical results on test case generators for the maximum clique problem. INFORMS J Comput 8(2):103–117

    Article  Google Scholar 

  • Seidman SB, Foster BL (1978) A graph-theoretic generalization of the clique concept. J Math Sociol 6:139–154

    Article  MathSciNet  MATH  Google Scholar 

  • Trukhanov S (2008) Novel approaches for solving large-scale optimization problems on graphs. PhD thesis, A&M Universtity, Texas

  • Wu B, Pei X (2007) A parallel algorithm for enumerating all the maximal k-plexes. In: Emerging technologies in knowledge discovery and data mining. Lecture notes in artificial intelligence, vol 4819. Springer, Berlin, pp 476–483

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Moser.

Additional information

A preliminary version of this paper titled “Algorithms and experiments for clique relaxations—finding maximum s-plexes” appeared in the Proceedings of the 8th International Symposium on Experimental Algorithms (SEA 2009), June 3–6, 2009, Dortmund, Germany, vol. 5526 of Lecture Notes in Computer Science, pp. 233–244, Springer, 2009. Following a referee’s advice, we replaced “s-plexes” by the more common term “k-plexes”. The main work was done while all authors were with Friedrich-Schiller-Universität Jena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, H., Niedermeier, R. & Sorge, M. Exact combinatorial algorithms and experiments for finding maximum k-plexes. J Comb Optim 24, 347–373 (2012). https://doi.org/10.1007/s10878-011-9391-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-011-9391-5

Keywords

Navigation