Log in

The Controlled Synthesis of Flower-Like TiO2 Nanosheets with Enhanced Photocatalytic Performance

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Exploring inorganic flower-like nanosheets is of increasing interest not only for fundamental research, but also for development of devices due to their good chemical stability, versatility, and high surface-to-volume ratio. In this work, flower-like TiO2 nanosheets (FTN) are successfully synthesized by a facile hydrothermal method. Notably, a series of single-factor experiments are carried out to drive multiple functional components in order to integrate into a single flower-like nanostructure perfectly. In addition, these experimental results further reveal that alcohol/glycerol molar ratio acts in a vital role for preparing optimal flower-like morphology and structure of TiO2. Furthermore, the photodegradation pathways and mechanism of Levofloxacin (LVOF) by FTN are shown according to photodegradation intermediates of LVOF, trap** experiments, and ligand-to-metal charge transfer (LMCT) sensitizing effect. Therefore, the present work not only demonstrates the controlled synthesis of flower-like TiO2 nanosheets, but also provides a guide for constructing other inorganic flower-like nanosheets or TiO2-based photocatalysts with optimal morphology, structure and photocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

Data Availability

The data will be provided at the request of peer reviewers.

References

  1. J. He, J.R. Chen, S.N. Liu, L. Lin, Y. Zhang, S. **ao, S.S. Cao. Activated carbon modify TiO2/Bi2O3 adsorbent: one-pot synthesis, high removal efficiency of organic pollutants, and good recyclability. J. Colloid Interface Sci. 648 (2023) 1034–1043

    Article  CAS  PubMed  Google Scholar 

  2. P. Arabkhani, A. Asfaram. The potential application of bio-based ceramic/organic xerogel derived from the plant sources: a new green adsorbent for removal of antibiotics from pharmaceutical wastewater. J. Hazard. Mater. 429 (2022) 128289

    Article  CAS  PubMed  Google Scholar 

  3. V. Balakumar, S. Selvarajan, A. Baishnisha, S. Kathiresan. In-situ growth of TiO2@B-doped g-C3N4 core-shell nanospheres for boosts the photocatalytic detoxification of emerging pollutants with mechanistic insight. Appl. Surf. Sci. 577 (2022) 151924

    Article  CAS  Google Scholar 

  4. Y.G. **ao, J. Wu, H. Li, X. Liu, Q. Li, Y. Zhang, S.S. Cao. In-situ regulation of hollow TiO2 with tunable anatase/rutile heterophase homojunction for promoting excellent photocatalytic degradation of pesticides. Ceram. Int. 49 (2023) 38070–38080

    Article  CAS  Google Scholar 

  5. Z.L. Yin, X.X. Zhang, X.H. Yuan, W. Wei, Y.G. **ao, S.S. Cao. Constructing TiO2@Bi2O3 multi-heterojunction hollow structure for enhanced visible-light photocatalytic performance. J. Clean. Prod. 375 (2022) 134112

    Article  CAS  Google Scholar 

  6. T.W. Wang, Q. Zhu, C. Huo, Z.L. Yin, Q.Y. Shi, J. Tao, F. Su, S.S. Cao. Constructing flower-like TiO2/Bi2O3 p-n heterojunction with enhanced visible-light photocatalytic performance. J. Alloy. Compd. 950 (2023) 169889

    Article  CAS  Google Scholar 

  7. S. Murgolo, S. Franz, H. Arab, M. Bestetti, E. Falletta, G. Mascolo. Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes. Water. Res. 164 (2019) 114920

    Article  CAS  PubMed  Google Scholar 

  8. X. Zhang, M. Kamali, T. Uleners, J. Symus, S. Zhang, Z. Liu, M. Elisabete. V. Costa, L. Appels, D. Cabooter, R. Dewil. UV/TiO2/periodate system for the degradation of organic pollutants-Kinetics, mechanisms and toxicity study. Chem. Eng. J. 449 (2022) 137680

    Article  CAS  Google Scholar 

  9. B. Fu, J. Li, H. Jiang, X. He, Y. Ma, J. Wang, C. Hu. Modulation of electric dipoles inside electrospun BaTiO3@TiO2 core-shell nanofibers for enhanced piezo-photocatalytic degradation of organic pollutants. Nano. Energy 93 (2022) 106841

    Article  CAS  Google Scholar 

  10. Y. Yamazaki, T. Toyonaga, N. Doshita, K. Mori, Y. Kuwahara, S. Yamazaki, H. Yamashita. Crystal facet engineering and hydrogen spillover-assisted synthesis of defective Pt/TiO2-x nanorods with enhanced visible light-driven photocatalytic activity. ACS Appl. Mater. Interfaces 14 (2022) 2291–2300

    Article  CAS  PubMed  Google Scholar 

  11. Y. Zhou, P. Song, M. Pan, H. Wang, Z. Liu, J. Di, D. Liu, J. Low, R. Yang. Super hydrophilic-electrons acceptor regulated rutile TiO2 nanorods for promoting photocatalytic H2 evolution. Appl. Surf. Sci. 623 (2023) 157098

    Article  CAS  Google Scholar 

  12. A.R. Mahammed Shaheer, N. Thangavel, R. Rajan, D.A. Abraham, R. Vinoth, K.R. Sunaja Devi, M.V. Shankar, B. Neppolian. Sonochemical assisted impregnation of Bi2WO6 on TiO2 nanorod to form Z-scheme heterojunction for enhanced photocatalytic H2 production. Adv. Powd. Technol. 32 (2021) 4734–4743

    Article  CAS  Google Scholar 

  13. Y.Y. Li, J. Sun, Y.H. Chen, H. Ma, J.X. Zhu, Z.Q. Chen, L. Meng, T.Z. Liu. Fabrication of an in situ-grown TiO2 nanowire thin film and its enhanced photocatalytic activity. Environ. Sci. Pollut. R. 30 (2023) 82560–82574

    Article  CAS  Google Scholar 

  14. L. Saravanan, R.A. Patil, P. Gultom, B. Kumar, A. Manikandan, Y.P. Fu, Y.L. Chueh, C.L. Cheng, W.C. Yeh, Y.R. Ma. Rutile-phase TiO2@carbon core-shell nanowires and their photoactivation in visible light region. Carbon 181 (2021) 280–289

    Article  CAS  Google Scholar 

  15. Q. Zhang, Y.D. Wang, X.M. Zhu, X. Liu, H. Li. 1T and 2H mixed phase MoS2 nanobelts coupled with Ti3+self-doped TiO2 nanosheets for enhanced photocatalytic degradation of RhB under visible light. Appl. Surf. Sci. 556 (2021) 149768

    Article  CAS  Google Scholar 

  16. X. **ang, L. Wu, J. Zhu, J. Li, X. Liao, H. Huang, J. Fan, K. Lv. Photocatalytic degradation of sulfadiazine in suspensions of TiO2 nanosheets with exposed (001) facets. Chin. Chem. Lett. 32 (2021) 3215–3220

    Article  CAS  Google Scholar 

  17. J. Liu, S. Zhou, P. Gu, T. Zhang, D. Chen, N. Li, Q. Xu, J. Lu. Conjugate polymer-clothed TiO2@V2O5 nanobelts and their enhanced visible light photocatalytic performance in water remediation. J. Colloid Interface Sci. 578 (2020) 402–411

    Article  CAS  PubMed  Google Scholar 

  18. S.Z. Zhao, Y. Lu, R. Lu, Y.D. Hu, R.D. Rodriguez, J.J. Chen. Constructing BiOBr/TiO2 heterostructure nanotubes for enhanced adsorption/photocatalytic performance. J. Water Process Eng. 54 (2023) 103972

    Article  Google Scholar 

  19. D. Cao, Q. Wang, S. Zhu, X. Zhang, Y. Li, Y. Cui, Z. Xue, S. Gao. Hydrothermal construction of flower-like MoS2 on TiO2 NTs for highly efficient environmental remediation and photocatalytic hydrogen evolution. Sep. Purif. Technol. 265 (2021) 118463

    Article  CAS  Google Scholar 

  20. M. Kushida, A. Yamaguchi, M. Miyauchi. Photocatalytic dry reforming of methane by rhodium supported monoclinic TiO2-B nanobelts. J. Energy Chem. 71 (2022) 562–571

    Article  CAS  Google Scholar 

  21. Y. Qin, Y. Guo, Z. Liang, Y. Xue, X. Zhang, L. Yang, J. Tian. Au nanorods decorated TiO2 nanobelts with enhanced full solar spectrum photocatalytic antibacterial activity and the sterilization file cabinet application. Chin. Chem. Lett. 32 (2021) 1523–1526

    Article  CAS  Google Scholar 

  22. R.B. Rajput, R.B. Kale. The facile synthesis of 3D hierarchical flower-like TiO2 microspheres with enhanced photocatalytic activity. J. Phys. Chem. Solids 177 (2023) 111286

    Article  CAS  Google Scholar 

  23. Q. Shang, S. Gao, G. Dai, J. Ren, D. Wang. Structure and photocatalytic activity of Ti3+ self-doped TiO2 flower shaped nanospheres. Surf. Interfaces 18 (2020) 100426

    Article  CAS  Google Scholar 

  24. M. Zhao, Z. Cui, D. Pan, F. Fan, J. Tang, Y. Hu, Y. Xu, P. Zhang, P. Li, X. Kong, W. Wu. An efficient uranium adsorption magnetic platform based on amidoxime-functionalized flower-like Fe3O4@TiO2 core-shell microspheres. ACS Appl. Mater. Interfaces 13 (2021) 17931–17939

    Article  CAS  PubMed  Google Scholar 

  25. B. **ng, T. Wang, X. Han, K. Zhang, B. Li. Anchoring Bi2S3 quantum dots on flower-like TiO2 nanostructures to boost photoredox coupling of H2 evolution and oxidative organic transformation. J. Colloid Interface Sci. 650 (2023) 1862–1870

    Article  CAS  PubMed  Google Scholar 

  26. X. Sun, W. He, X. Hao, H. Ji, W. Liu, Z. Cai. Surface modification of BiOBr/TiO2 by reduced AgBr for solar-driven PAHs degradation: mechanism insight and application assessment. J. Hazard. Mater. 412 (2021) 125221

    Article  CAS  PubMed  Google Scholar 

  27. D. Liu, B. Sun, S. Bai, T. Gao, G. Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity. Chin. J. Catal. 50 (2023) 273–283

    Article  CAS  Google Scholar 

  28. L. Wang, J. Qiu, N. Wu, X. Yu, X. An. TiO2/CsPbBr3 S-scheme heterojunctions with highly improved CO2 photoreduction activity through facet-induced Fermi level modulation. J. Colloid Interface Sci. 629 (2023) 206–214

    Article  CAS  PubMed  Google Scholar 

  29. D.X. Yang, J. Li, L. Luo, R.Y. Deng, Qi. He, Y. Chen. Exceptional levofloxacin removal using biochar-derived porous carbon sheets: mechanisms and density-functional-theory calculation. Chem. Eng. J. 387 (2020) 124103

    Article  CAS  Google Scholar 

  30. X. Zhang, Y. **ao, S. Cao, Z. Yin, Z. Liu. Ternary TiO2@Bi2O3@TiO2 hollow photocatalyst drives robust visible-light photocatalytic performance and excellent recyclability. J. Clean. Prod. 352 (2022) 131560

    Article  CAS  Google Scholar 

  31. Y. **ang, Z. Xu, Y. Zhou, Y. Wei, X. Long, Y. He, D. Zhi, J. Yang, L. Luo. A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium. Chemosphere 237 (2019) 124464.

    Article  CAS  PubMed  Google Scholar 

  32. J.R. Chen, J. He, Z.L. Ying, T.W. Wang, S.N. Liu, S.S. Cao. One-pot synthesis of Porous TiO2/BiOI adsorbent with high removal efficiency and excellent recyclability towards tetracyclines. Ceram. Int. 49 (2023) 22139–22148

    Article  CAS  Google Scholar 

  33. Y.F. Hu, X.Y. Wei, Y.L. Hu, W. Wang, J.H. Fan, X.T. Liu, W.S. Chai, Z.Y. Zhou, Z.Q. Ren. Facile preparation of sodium alginate-based gel spheres by droplet polymerization method for removal of levofloxacin from aqueous solution. Chem. Eng. J. 392 (2020) 123718

    Article  CAS  Google Scholar 

  34. F. Hasanvandian, A. Shokri, M. Moradi, B. Kakavandi, S. R. Setayesh. Encapsulation of spinel CuCo2O4 hollow sphere in V2O5-decorated graphitic carbon nitride as high-efficiency double Z-type nanocomposite for levofloxacin photodegradation. J. Hazard. Mater, 423 (2022) 127090.

    Article  CAS  PubMed  Google Scholar 

  35. L. Lu, C. Niu, H. Guo, J. Wang, M. Ruan, L. Zhang, C. Liang, H. Liu, Y. Yang. Efficient degradation of Levofloxacin with magnetically separable ZnFe2O4/NCDs/Ag2CO3 Z-scheme heterojunction photocatalyst: vis-NIR light response ability and mechanism insight. Chem. Eng. J, 383 (2020) 123192.

    Article  Google Scholar 

  36. J. Lyu, M. Ge, Z. Hu, C. Guo. One-pot synthesis of magnetic CuO/Fe2O3/CuFe2O4 nanocomposite to activate persulfate for levofloxacin removal: investigation of efficiency, mechanism and degradation route. Chem. Eng. J, 389 (2020) 124456.

    Article  CAS  Google Scholar 

  37. S. Zhang, Z. Yin, L. **e, J. Yi, W. Tang, T. Tang, J. Chen, S. Cao. Facet engineered TiO2 hollow sphere for the visible-light-mediated degradation of antibiotics via ligand-to-metal charge transfer. Ceram. Int. 46 (2020) 8949–8957.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21876069). The authors also thank the financial support provided by 2022 Fuyang normal university provincial and ministerial scientific research platform open project (FSKFKT013D) and Collaborative Innovation Center of Technology and Material of Water Treatment.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J. R. Chen and S. Cao; data curation, Q. Li, X. Xu, F. Ma, and Y. Zhang; writing—review and editing, J. R. Chen and S. Cao; supervision, Z. Yin, and S. Cao; project administration, S. Cao.

Corresponding authors

Correspondence to Juanrong Chen or Shunsheng Cao.

Ethics declarations

Ethical Approval

The manuscript does not include the study of human/animal. The declaration is not applicable.

Competing Interests

The authors state that there is no conflict of interest in financial/non-financial or personal consideration.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Xu, X., Chen, J. et al. The Controlled Synthesis of Flower-Like TiO2 Nanosheets with Enhanced Photocatalytic Performance. J Clust Sci 35, 1507–1520 (2024). https://doi.org/10.1007/s10876-024-02599-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-024-02599-9

Keywords

Navigation