Log in

GO and rGO Blended CdS Nanoparticles for Congo Red Dye Deactivation, Energy Storage and Growth Inhibition Against Bacillus subtilis and Escherichia coli Bacterial Strains: A Comparative Analysis

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this paper, CdS (CS), graphene oxide (GO) and reduced graphene oxide (rGO)-blended CdS (GCS and rCS) NPs are studied for their photocatalytic, electrochemical, and antimicrobial properties. CS and GCS were synthesized by chemical precipitation method. Centella asiatica leaf extract was used to produce rCS in one pot. X-ray diffraction (XRD) studies revealed hexagonal crystal structure for all the samples. All samples had Cd-S bond vibrations confirmed by Fourier transform infrared (FT-IR) spectra. Photoluminescence (PL) intensities of CdS quenched with GO and rGO decoration. GCS and rCS NPs exhibited strong optical absorption with reduced band gaps. Photodegradation efficiency of CS against CR dye increased from 84 to 90 % for GCS and 96 % for rCS. Specific capacitance of CdS increased with GO, rGO incorporation and the rGO-blended CdS NPs showed better electrochemical properties. Antibacterial tests performed with different concentrations (20, 40, 60 and 80 mg) of CS, GCS and rCS NPs confirmed that GCS and rCS resisted the tested B. subtilis and E. coli bacteria effectively better than CS, with rCS showing more resistance. These outcomes show that rGO blended PbS/NiO NC might be used as antibiotics in the future due to its high effectiveness against the pathogenic microorganisms.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

Data and Materials used for this study are available upon request.

References

  1. R. Kumar, R. Matsuo, K. Kishida, M. M. A. Galeil, Y.Suda, A. Matsuda, (2019). Electrochim. Acta 303, 246.

  2. E. E. Miller, Y. Hua, and F. H. Tezel (2018). J. Energy Storage 20, 30.

    Article  Google Scholar 

  3. I. Sengupta, P. Bhattacharya, M. Talukdar, S. Neogi, S. K. Pal, and S. Chakraborty (2019). Coll. Interface Sci. Commun. 28, 60.

    Article  CAS  Google Scholar 

  4. D. Akyuz (2021). Opt. Mater. 116.

    Article  CAS  Google Scholar 

  5. L. Ma, X. Ai, Y. Lu, S. Yan, and X. S. Wu (2020). J. Alloys Compd. 828, 154406.

    Article  CAS  Google Scholar 

  6. R. Ma, L. Dai, and G. Qin (2007). Appl. Phys. Lett. 90, 093109.

    Article  ADS  Google Scholar 

  7. J. Sun, L. Sun, N. Han, H. Chu, S. Bai, X. Shu, R. Luo, and A. Chen (2019). Sens. Actuators B. Chem. 299, 126832

    Article  CAS  Google Scholar 

  8. Y-F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang (2008) Appl. Phys. Lett. 92, 022105.

  9. Y. Guo, J. Wang, Z. Tao, F. Dong, K. Wang, X. Ma, P. Yang, P. Hu, Y. Xu, and L. Yang (2012). Cryst Eng Comm. 14, 1185.

    Article  CAS  Google Scholar 

  10. R. Bairy, A. Jayarama, S. D. Kulkarni, M. S. Murari, and H. Vijeth (2021). Mater. Sci. Semicond. Proc. 121, 105400.

    Article  CAS  Google Scholar 

  11. Z. Bujnakova, M. Balaz, E. Dutkova, P. Balaz, M. Kello, G. Majzisova, J. Mojzis, M. Vilkova, J. Imrich, and M. Psotka (2017). Coll. Interface Sci. 486, 97.

    Article  CAS  ADS  Google Scholar 

  12. J. Dong, L. X. Duan, Q. Wu, and W. F. Yao (2018). Int. J. Hydrogen Energy 43, 2139.

    Article  CAS  Google Scholar 

  13. M. A. Mahdi, J. J. Hassan, S. S. Ng, and Z. Hassan (2012). J. Cryst. Growth 359, 43.

    Article  CAS  ADS  Google Scholar 

  14. M. Sharma, K. Behl, S. Nigam, and M. Joshi (2018). Vacuum 156, 434.

    Article  CAS  ADS  Google Scholar 

  15. J. Gao, P. He, T. Yang, L. Zhou, X. Wang, S. Chen, H. Lei, and H. Zhang (2019). J. Electroanal. Chem. 852, 113516.

    Article  CAS  Google Scholar 

  16. S. Yousaf, M. Aadil, S. Zulfiqar, M. F. Warsi, P. O. Agboola, M. F. A. Aboud, and I. Shakir (2020). J. Mater. Res. Technol. 9, 14158.

    Article  CAS  Google Scholar 

  17. X. N. Wei, C. L. Ou, X. X. Guan, Z. K. Peng, and X. C. Zheng (2019). Appl. Surf. Sci. 469, 666.

    Article  CAS  ADS  Google Scholar 

  18. P. Kumar, F. Ram, K. Shanmuganathan, and M. N. Luwang (2022). Mater. Sci. Eng. B. 276, 115528.

    Article  CAS  Google Scholar 

  19. T. Dufaux, J. Boettecher, M. Burghard, and K. Kern (2010). Small 6, 1868.

    Article  CAS  PubMed  Google Scholar 

  20. X. Zhao, S. Zhou, L. P. Jiang, W. Hou, Q. Shen, and J. J. Zhu (2012). Chem. Eur. J. 18, 4974.

    Article  CAS  PubMed  Google Scholar 

  21. X. Zhang, X. Ge, S. Sun, Y. Qu, W. Chi, C. Chen, and W. Lu (2016). Cryst Eng Comm 18, 1090.

    Article  CAS  Google Scholar 

  22. A. T. Habte and D. W. Ayole (2019). Adv. Mater Sci. Eng. 2019, 5058163.

    Article  Google Scholar 

  23. D. Prabha, S. Ilangovan, M. Suganya, S. Anitha, S. Balamurugan, and A. R. Balu (2017). J. Mater. Sci. Mater. Electron. 28, 15556.

    Article  CAS  Google Scholar 

  24. A. Rahman, M. Aadil, M. Akhtar, M. F. Warsi, A. Jamil, I. Shakir, and M. Shahid (2020). Ceram. Int. 46, 13517.

    Article  CAS  Google Scholar 

  25. A. C. Jeoffrey, S. J. Ramalingam, K. Murugaiah, and A. R. Balu (2023). Chem. Phy. Impact 6, 100246.

    Article  Google Scholar 

  26. V. Narasimman, V. S. Nagarethinam, K. Usharani, and A. R. Balu (2017). Optik 138, 398.

    Article  CAS  ADS  Google Scholar 

  27. T. A. Pham, B. C. Choi, and Y. T. Jeong (2010). Nanotechnol. 21, 465603.

    Article  ADS  Google Scholar 

  28. M. Suganya, R. Baskaran, V. S. Nagarethinam, and A. R. Balu (2021). Int. J. Nanosci. 20, 2150034.

    Article  CAS  Google Scholar 

  29. R. Kumar, S. M. Youssry, H. M. Soe, M. M. Abdel-Galeli, G. Kawamura, and A. Matsuda (2020). J. Energy Storage 30, 101539.

    Article  Google Scholar 

  30. X. W. Wang, Q. C. Li, H. Xu, L. Gan, X. Ji, H. Liu, and R. Zhang (2020). Int. J. Hyd. Energy 45, 28394.

    Article  CAS  Google Scholar 

  31. D. Prabha, K. Usharani, S. Ilangovan, M. Suganya, S. Balamurugan, J. Srivind, V. S. Nagarethinam, and A. R. Balu (2018). Mater. Technol. 33, 333.

    Article  CAS  ADS  Google Scholar 

  32. M. Suganya, A. R. Balu, S. Balamurugan, V. Narasimman, N. Manjula, C. Rajashree, and V. S. Nagarethinam (2018). Surf. Interfaces 13, 148.

    Article  CAS  Google Scholar 

  33. Y. C. Lin, D. C. Tsai, Z. C. Chang, and F. S. Shieu (2018). Appl. Surf. Sci. 440, 1227.

    Article  CAS  ADS  Google Scholar 

  34. S. Farid, M. A. Stroscio and M. Dutta, (2012). AIP Conf. Proc. 45, 1506.

    Google Scholar 

  35. A. C. Ferrari and J. Robertson (2000). Phys. Rev. B 61, 14095.

    Article  CAS  ADS  Google Scholar 

  36. Y. Zhao, L. Li, Y. Zuo, G. He, Q. Chen, Q. Meng, and H. Chen (2022). Chemosphere 286, 131738.

    Article  CAS  PubMed  Google Scholar 

  37. D. Channei, K. Chansaenpak, P. Jannoey, and S. Phanichphant (2019). Solid State Sci. 96, 105951.

    Article  CAS  Google Scholar 

  38. P. Nandi and D. Das (2022). J. Phys. Chem. Solids 160, 110344.

    Article  CAS  Google Scholar 

  39. S. Y. Janbandhu, C. T. Suhaila, S. R. Munishwar, J. R. Jayaramaiah and R. S. Gedam (2022). Chemosphere. 286, 131672.

  40. S. Sagadevan, Z. Z. Chowdhury, M. R. B. Johan, F. A. Aziz, L. S. Roselin, H. L. Hsu and R. Selvin (2019). Results Phys. 12, 878.

  41. C. Venkatareddy, N. Bandaru, I. N. Reddy, J. Shim, and K. Yoo (2018). Mater. Sci. Eng. B 232–235, 68.

    Article  Google Scholar 

  42. L. Li, L. Yu, Z. Lin, G. Yang, and A. C. S. Appl (2016). Mater. Interfaces 8, 8536.

    Article  CAS  Google Scholar 

  43. X. X. Liu, X. Li, X. X. Liu, S. He, J. **, and H. Meng (2020). Coll. Surf. A Physicochem. Eng. Aspects 584, 124011.

    Article  CAS  Google Scholar 

  44. M. P. Abubacker, G. Selvan, and A. R. Balu (2017). J. Mater. Sci. Mater. Electron. 28, 10433.

    Article  CAS  Google Scholar 

  45. G. Williams and P. V. Kamat (2009). Langmuir 25, 13869.

    Article  CAS  PubMed  Google Scholar 

  46. L. Yu, J. Chen, Z. Liang, W. Xu, L. Chen, and D. Ye (2016). Sep. Purif. Technol. 171, 80.

    Article  CAS  Google Scholar 

  47. N. Ahmad, S. Sultana, S. Sabir, and M. Z. Khan (2020). J. Photochem. Photobiol. A Chem. 386, 112129.

    Article  CAS  Google Scholar 

  48. C. Ingrosso, V. Valenzano, M. Corricelli, A. Testolin, V. Pifferi, G. V. Bianco, R. Comparelli, N. Depalo, E. Fanizza, M. Striccoli, A. Agostiano, I. Palchetti, L. Falciola, and M. L. Curri (2021). Carbon 182, 57.

    Article  CAS  Google Scholar 

  49. M. J. Nicol, R. L. Paul, J. W. Diggie, and A. P. Saunders (1978). Electrochem. Acta 23, 625.

    Article  Google Scholar 

  50. J. W. Lee, T. Ahn, D. Soundararajan, J. M. Ko, and J. D. Kim (2011). Chem. Commun. 47, 6305.

    Article  CAS  Google Scholar 

  51. J. Johny, S. Sepulveda-Guzman, B. Krichnan, D. A. Avellaneda, J. A. Martinez, M. R. Anantharaman, and S. Shaji (2019). Solar Energy Mat. Solar cells 189, 53.

    Article  CAS  Google Scholar 

  52. Z. H. Huang, Y. Song, D. Y. Feng, Z. Sun, X. Sun, and X. X. Liu (2018). ACS Nano 12, 3557.

    Article  CAS  PubMed  Google Scholar 

  53. K. Subramani, N. Sudhan, M. Karnan, and M. Sathish (2017). Chem. Select 2, 11384.

    CAS  Google Scholar 

  54. T. Zhai, X. Lu, Y. Ling, M. Yu, G. Wang, T. Liu, C. Liang, Y. Tong, and Y. Li (2014). Adv. Mater. 26, 5869.

    Article  CAS  PubMed  Google Scholar 

  55. G. Lv, B. Shi, H. Huang, H. Chen, H. Feng, P. P. Zhou, W. Ye, Z. Zhang, and Z. Yang (2021). J. Food Comp. Anal. 104, 104136.

    Article  CAS  Google Scholar 

  56. A. Allahbakhsh, Z. Jarrahi, G. Farzi, and A. Shavandi (2022). Mater. Chem. Phys. 277, 125502.

    Article  CAS  Google Scholar 

  57. N. M. Dat, C. Q. Cong, N. M. Phuc, N. T. Dat, L. M. Huong, L. T. Tai, N. D. Hai, D. B. Thinh, T. D. Dat, M. T. Phong and N. H. Hieu, (2022) Mater. Today Sust. 19, 100216.

  58. T. Huang, M. Sui, and J. Li (2017). Sci. Total Environ. 574, 818.

    Article  CAS  PubMed  ADS  Google Scholar 

  59. B. Joshi, C. Regmi, D. Dhakai, G. Gyawati, and S. W. Lee (2018). Prog. Nat. Sci. Mater. Int. 28, 15.

    Article  CAS  Google Scholar 

  60. S. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, and Y. Chen (2011). ACS Nano 5, 6971.

    Article  CAS  PubMed  Google Scholar 

  61. A. R. Malik, S. Sharif, F. Shaheen, M. Khalid, Y. Iqbal, A. Faisal, M. H. Aziz, M. Atif, S. Ahmad, M. F. e-Alam, N. Hossain, H. Ahmad and T. Botmart, J. Saudi Chem. Soc. 26, 101438.

  62. T. K. Jana, S. K. Maji, A. Pal, R. P. Maiti, T. K. Dolai, and K. Chatterjee (2016). J. Colloid Interface Sci. 480, 9.

    Article  CAS  PubMed  ADS  Google Scholar 

  63. M. K. Okla, B. Janani, A. A. Al-ghamdi, M. A. Abdel-Maksoud, H. Abdelgawad, A. Das, and S. S. Khan (2022). Colloids Surf. A. Phys. Eng. Aspects 632, 127729.

    Article  CAS  Google Scholar 

  64. L. Zou, X. Wang, X. Xu, and H. Wang (2016). Ceram. Int. 42, 372.

    Article  CAS  Google Scholar 

  65. R. A. Moqbel, M. A. Gondal, T. F. Qahtan, and A. Lais (2018). AIP conf. Proc. 1976.

    Article  Google Scholar 

  66. P. J. Sophia, D. Balaji, T. James Caleb Peters, D. Sathish Chander, S. Vishwath Rishaban, P. Vijaya Shanthi, K. R. Nagavenkatesh and M. Rajesh Kumar, ChemistrySelect 5, 4125.

  67. V. K. Gupta, D. Pathania, M. Asif, and G. Sharma (2014). J. Mol. Liq. 196, 107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For the CV studies, we are very grateful to Mr. Vincent of St. Joseph’s College, Tiruchirappalli, Tamilnadu.

Funding

“The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—ARB; Methodology—MS; Formal analysis and investigation—SA, MS; Writing—original draft preparation—SCD; Writing—review and editing—ARB; Funding acquisition—KD, CK; Interpretation of data—MK, BSD. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to A. R. Balu.

Ethics declarations

Competing Interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suganya, M., Balu, A.R., Devi, B.S. et al. GO and rGO Blended CdS Nanoparticles for Congo Red Dye Deactivation, Energy Storage and Growth Inhibition Against Bacillus subtilis and Escherichia coli Bacterial Strains: A Comparative Analysis. J Clust Sci 35, 827–843 (2024). https://doi.org/10.1007/s10876-023-02522-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02522-8

Keywords

Navigation