Log in

Ultra-Fast Degradation of Thymol Blue Dye Under Microwave Irradiation Technique Using Alpha-orthorhombic Molybdenum Trioxide (α-MoO3) Colloidal Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Present study reports the hydrothermal synthesis procedure to prepare the facile and sustainable orthorhombic Molybdenum trioxide (α-MoO3) nanoparticles (NPs) for the degradation of thymol blue dye. Synthesized α-MoO3NPs was characterized by FTIR, XRD, Zeta-potential, SEM, and TEM to investigate the functionalities, texture, size, and morphology of α-MoO3 NPs. The average size was calculated up to 68 ± 5 nm. The α-MoO3NPs was successfully applied to degrade toxic organic dye (thymol blue) in aqueous media. To achieve maximum percentage degredation of dye different parameters were optimized, including a catalyst dose, reaction time, effect of microwave irradiation at low power, reproducibility of catalyst. At optimum conditions, the fabricated α-MoO3NPs-based heterogeneous nano-catalyst was highly efficient for degrading thymol blue dye in aqueous media; the percentage degradation was obtained up to 99% within 60 s just using 120 µg of α-MoO3NPs was used under the microwave radiations. The heterogeneous nano-catalyst shows excellent performance and is highly efficient as compared to previously reported work.

Graphical Abstract

The schematic diagram for the degradation of thymol blue dye using prepared MoO3 nano-catalyst

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, and M. Maqbool (2021). J. Ind. Eng. Chem. 97, 111.

    Article  CAS  Google Scholar 

  2. M. S. Jagirani and M. Soylak (2020). Microchem. J. 159, 105436.

    Article  CAS  Google Scholar 

  3. M. S. Jagirani, O. Ozalp, and M. Soylak (2021). Crit. Rev. Anal. Chem. 1

  4. M. A. Ebrahimzadeh, A. Naghizadeh, O. Amiri, M. Shirzadi-Ahodashti, and S. Mortazavi-Derazkola (2020). Bioorg. Chem. 94, 103425.

    Article  CAS  PubMed  Google Scholar 

  5. P. Gregory (1986). Dyes Pigments 7, 45.

    Article  CAS  Google Scholar 

  6. D. Mal, E. Alveroglu, A. Balouch, M. S. Jagirani, S. Abdullah, and S. Kumar (2021). Environ. Technol. 1, 3631.

    Google Scholar 

  7. A. H. Pato, A. Balouch, F. N. Talpur, P. Panah, A. M. Mahar, M. S. Jagirani, S. Kumar, and S. Sanam (2021). Environ. Sci. Pollut. Res. 28, 947.

    Article  CAS  Google Scholar 

  8. M. Al-Ghouti, M. Khraisheh, S. Allen, and M. Ahmad (2003). J. Environ. Manag. 69, 229.

    Article  CAS  Google Scholar 

  9. S. Reddy and W. J. Osborne (2020). Biocatal. Agric Biotechnol. 25, 101574.

    Article  Google Scholar 

  10. X.-G. Li, R. Liu, and M.-R. Huang (2005). Chem. Mater. 17, 5411.

    Article  CAS  Google Scholar 

  11. F. He, J. Fan, D. Ma, L. Zhang, C. Leung, and H. L. Chan (2010). Carbon 48, 3139.

    Article  CAS  Google Scholar 

  12. S. S. Patil and V. M. Shinde (1988). Environ. Sci. Technol. 22, 1160.

    Article  CAS  PubMed  Google Scholar 

  13. A. T. Moore, A. Vira, and S. Fogel (1989). Environ. Sci. Technol. 23, 403.

    Article  CAS  Google Scholar 

  14. M. Venceslau, S. Tom, and J. Simon (1994). Environ. Technol. 15, 17.

    Google Scholar 

  15. M. S. Jagirani and M. Soylak (2022). TrAC Trends Anal. Chem. 116762

  16. S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun (2015). Rsc Adv. 5, 14610.

    Article  CAS  Google Scholar 

  17. V. Dusastre (ed.), Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, Singapore, 2010).

    Google Scholar 

  18. X. Hu, X. Hu, Q. Peng, L. Zhou, X. Tan, L. Jiang, C. Tang, H. Wang, S. Liu, and Y. Wang (2020). Chem. Eng. J. 380, 122366.

    Article  CAS  Google Scholar 

  19. Z. A. Mahar, G. Q. Shar, and A. Balouch (2021). Fabrication of ZnO nanocatalyst as an excellent heterogeneous catalyst applicant for Methyl Orange dye degradation in aqueous medium.

  20. A. A. Ibrahim, R. S. Salama, S. A. El-Hakam, A. S. Khder, and A. I. Ahmed (2021). Colloids. Surf. A 616, 126361.

    Article  CAS  Google Scholar 

  21. A. Khataee, A. Fazli, F. Zakeri, and S. W. Joo (2020). J. Ind. Eng. Chem. 89, 301.

    Article  CAS  Google Scholar 

  22. J. A. Buledi, A. H. Pato, A. H. Kanhar, A. R. Solangi, M. Batool, S. Ameen, and I. M. Palabiyik (2021). Appl. Nanosci. 11, 1241.

    Article  CAS  Google Scholar 

  23. A. M. Mahar, E. Alveroglu, A. Balouch, F. N. Talpur, and M. S. Jagirani (2022). Environmental Science and Pollution Research, 1

  24. M. S. Jagirani, F. Uzcan, and M. Soylak (2022). Instrum. Sci. Technol. 1

  25. M. Soylak, M. S. Jagirani, and F. Uzcan (2022). Iran. J. Sci. Technol. Trans. A, 1

  26. S. Sun, X. Zhang, Q. Yang, S. Liang, X. Zhang, and Z. Yang (2018). Prog. Mater. Sci. 96, 111.

    Article  CAS  Google Scholar 

  27. Y. Zhao, Y. Zhang, Z. Yang, Y. Yan, and K. Sun (2013). Sci. Technol. Adv. Mater.

  28. S. Sun and S. Liang (2017). J. Mater. Chem. A 5, 20534.

    Article  CAS  Google Scholar 

  29. M. S. Jagirani, A. Balouch, E. Alveroğlu, S. A. Mahesar, B. Zeytuncu, and A. R. Khaskhali (2022). Polym. Bull. 79, 10135.

    Article  CAS  Google Scholar 

  30. Z. Yang, F. Teng, W. Gu, W. Hao, S. Shi, and F. Zhao (2019). Mater. Today Chem. 14, 100196.

    Article  CAS  Google Scholar 

  31. R. Kumar, Z. Ahmed, R. Kumar, S. N. Jha, D. Bhattacharyya, C. Bera, and V. Bagchi (2020). Catal. Sci. Technol. 10, 4776.

    Article  CAS  Google Scholar 

  32. Y. Zhu, Y. Yao, Z. Luo, C. Pan, J. Yang, Y. Fang, H. Deng, C. Liu, Q. Tan, and F. Liu (2019). Molecules 25, 18.

    Article  PubMed  PubMed Central  Google Scholar 

  33. A. M. Mahar, A. Balouch, F. N. Talpur, A. Kumar, P. Panah, and M. T. Shah (2019). Catal. Lett. 149, 2415.

    Article  CAS  Google Scholar 

  34. M. S. Jagirani, S. A. Mahesar, S. Uddin, S. T. H. Sherazi, A. H. Kori, S. A. Lakho, N. H. Kalwar, and S. S. Memon (2022). J. Clust. Sci. 33, 241.

    Article  CAS  Google Scholar 

  35. A. A. Umar, E. Rahmi, A. Balouch, M. Y. AbdRahman, M. M. Salleh, and M. Oyama (2014). J. Mater. Chem. A 2, 17655.

    Article  CAS  Google Scholar 

  36. X. Zhang, J. Lei, D. Wu, X. Zhao, Y. **g, and Z. Zhou (2016). J. Mater. Chem. A 4, 4871.

    Article  CAS  Google Scholar 

  37. X. Tan, L. Wang, C. Cheng, X. Yan, B. Shen, and J. Zhang (2016). Chem. Commun. 52, 2893.

    Article  CAS  Google Scholar 

  38. D. Van Pham, R. A. Patil, C.-C. Yang, W.-C. Yeh, Y. Liou, and Y.-R. Ma (2018). Nano Energy 47, 105.

    Article  CAS  Google Scholar 

  39. C. Imawan, H. Steffes, F. Solzbacher, and E. Obermeier (2001). Sens. Actuators B 78, 119.

    Article  CAS  Google Scholar 

  40. H. Sinaim, D. J. Ham, J. S. Lee, A. Phuruangrat, S. Thongtem, and T. Thongtem (2012). J. Alloys Compds. 516, 172.

    Article  CAS  Google Scholar 

  41. H. Ren, S. Sun, J. Cui, and X. Li (2018). Cryst. Growth Des. 18, 6326.

    Article  CAS  Google Scholar 

  42. K. Tang, S. A. Farooqi, X. Wang, and C. Yan (2019). ChemSusChem 12, 755.

    Article  CAS  PubMed  Google Scholar 

  43. F. Jiang, W. Li, R. Zou, Q. Liu, K. Xu, L. An, and J. Hu (2014). Nano Energy 7, 72.

    Article  CAS  Google Scholar 

  44. H. K. Sadhanala, V. K. Harika, T. R. Penki, D. Aurbach, and A. Gedanken (2019). ChemCatChem 11, 1495.

    Article  CAS  Google Scholar 

  45. I. A. De Castro, R. S. Datta, J. Z. Ou, A. Castellanos-Gomez, S. Sriram, T. Daeneke, and K. Kalantar-Zadeh (2017). Adv. Mater. 29, 1701619.

    Article  Google Scholar 

  46. C. Wu, H. **e, D. Li, D. Liu, S. Ding, S. Tao, H. Chen, Q. Liu, S. Chen, and W. Chu (2018). J. Phys. Chem. Lett. 9, 817.

    Article  CAS  PubMed  Google Scholar 

  47. X. Hu, W. Zhang, X. Liu, Y. Mei, and Y. Huang (2015). Chem. Soc. Rev. 44, 2376.

    Article  CAS  PubMed  Google Scholar 

  48. A. S. Etman, H. N. Abdelhamid, Y. Yuan, L. Wang, X. Zou, and J. Sun (2018). ACS Omega 3, 2193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. B. Gao, H. Fan, X. Zhang, and C. Zhu (2013). Micro. Nano Lett. 8, 500.

    CAS  Google Scholar 

  50. Y. Ma, Y. Jia, Z. Jiao, L. Wang, M. Yang, Y. Bi, and Y. Qi (2015). Mater. Lett. 157, 53.

    Article  CAS  Google Scholar 

  51. M. Szkoda, K. Trzciński, K. Siuzdak, and A. Lisowska-Oleksiak (2017). Electrochim. Acta 228, 139.

    Article  CAS  Google Scholar 

  52. Y. Liu, P. Feng, Z. Wang, X. Jiao, and F. Akhtar (2017). Sci. Rep. 7, 1.

    Article  Google Scholar 

  53. M. Abinaya, K. Saravanakumar, E. Jeyabharathi, and V. Muthuraj (2019). J. Inorg. Organomet. Polym. Mater. 29, 101.

    Article  CAS  Google Scholar 

  54. U. Holzwarth and N. Gibson (2011). Nat. Nanotechnol. 6, 534.

    Article  CAS  PubMed  Google Scholar 

  55. S. Singh, M. Aswath, R. D. Biswas, R. Ranganath, H. K. Choudhary, R. Kumar, and B. Sahoo (2019). Case Stud. Constr. Mater. 11, e00266.

    Google Scholar 

  56. X. Zeng, L. Niu, L. Song, X. Wang, X. Shi, and J. Yan (2015). Metals 5, 1829.

    Article  Google Scholar 

  57. W. Dong and B. Dunn (1998). J. Mater. Chem. 8, 665.

    Article  CAS  Google Scholar 

  58. D. M. Sim, H. J. Han, S. Yim, M. J. Choi, J. Jeon, and Y. S. Jung (2017). ACS Omega 2, 4678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. E. Fosso-Kankeu, M. Spiro, F. Waanders, N. Kumar, and S. S. Ray (2018). Hydrothermal synthesis, characterization and adsorption testing of MoS2-Zeolite for the removal of lead in an aqueous solution.

  60. F. M. Aldweri, M. H. Abuzayed, M. S. Al-Ajaleen, and K. A. Rabaeh (2018). Results Phys. 8, 1001.

    Article  Google Scholar 

  61. F. A. Bassyouni, S. M. Abu-Bakr, and M. A. Rehim (2012). Res. Chem. Intermediates 38, 283.

    Article  CAS  Google Scholar 

  62. T. K. Ghorai, D. Dhak, S. Dalai, and P. Pramanik (2008). Mater. Res. Bull. 43, 1770.

    Article  CAS  Google Scholar 

  63. A. Nibret, O. Yadav, I. Diaz, and A. M. Taddesse (2015). Bull. Chem. Soc. Ethiopia 29, 247.

    Article  CAS  Google Scholar 

  64. C. Zheng, X. An, and T. Yin (2017). New J. Chem. 41, 13365.

    Article  CAS  Google Scholar 

  65. H. R. Rajabi and M. Farsi (2015). Mater. Sci. Semicond. Process. 31, 478.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamna Balouch.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balouch, A., Jagirani, M.S., Alveroglu, E. et al. Ultra-Fast Degradation of Thymol Blue Dye Under Microwave Irradiation Technique Using Alpha-orthorhombic Molybdenum Trioxide (α-MoO3) Colloidal Nanoparticles. J Clust Sci 34, 2287–2296 (2023). https://doi.org/10.1007/s10876-022-02381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02381-9

Keywords

Navigation