Log in

Reconciliation of the Theoretical and Experimental Value of the Static Electric Polarizability of the Aluminum Atom

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The electric polarizability of the aluminum atom has become a benchmark for calibration in electric polarizability measurements of clusters during the past decades. However, there is a large discrepancy between the experimentally measured value and the theoretically predicted one. It is worth to clarify the argument through systematic modern calculations. Here, we present high-level computation of the static dipole polarizability of the ground-state aluminum atom by applying the PC-4 basis set with various ab initio methods including Unrestricted-Hartree–Fock, Møller-Plesset perturbation and the coupled cluster. In contrast to the previously calculated values which deviate from the experimentally measured one by 20%, our recommended value of 47.69 a.u. lies within the experimental one of 46 ± 2 a.u. This reconciliates the theoretical with the experimental value again and reaffirms its reliability as calibration for future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. K. C. Chatzisavvas, S. T. Tserkis, C. P. Panos, and C. C. Moustakidis (2015). Int. J. Theor. Phys. 54, 1481–1491.

    Article  CAS  Google Scholar 

  2. W. Z. Wang, M. Z. Rong, A. B. Murphy, Y. Wu, J. W. Spencer, J. D. Yan, and M. T. C. Fang (2011). J. Phys. D: Appl. Phys. 44, 355207.

    Article  Google Scholar 

  3. T. M. Miller and B. Bederson (1988). Adv. At. Mol. Phys. 25, 37.

    Article  CAS  Google Scholar 

  4. J. A. Becker (1997). Angew. Chem. Int. Edit. 36, 1390.

    Article  CAS  Google Scholar 

  5. T. M. Miller and B. Bederson (1977). Adv. At. Mol. Phys. 13, 1–55.

    CAS  Google Scholar 

  6. W. A. de Heer (1993). Rev. Mod. Phys. 65, 611.

    Article  Google Scholar 

  7. W. F. Holmgren, M. C. Revelle, V. P. A. Lonij, and A. D. Cronin (2010). Phys. Rev. A 81, 053607.

    Article  Google Scholar 

  8. L. Ma, J. Indergaard, B. Zhang, I. Larkin, R. Moro, and W. A. de Heer (2015). Phys. Rev. A 91, 010501(R).

    Article  Google Scholar 

  9. A. Derevianko, W. R. Johnson, M. S. Safronova, and J. F. Babb (1999). Phys. Rev. Lett. 82, 3589–3592.

    Article  CAS  Google Scholar 

  10. G. Maroulis (2001). Chem. Phys. Lett. 334, 207.

    Article  CAS  Google Scholar 

  11. C. R. Ekstrom, J. Schmiedmayer, M. S. Chapman, T. D. Hammond, and D. E. Pritchard (1995). Phys. Rev. A 51, 3883.

    Article  CAS  PubMed  Google Scholar 

  12. P. Milani, I. Moullet, and W. A. de Heer (1990). Phys. Rev. A 42, 5150.

    Article  CAS  PubMed  Google Scholar 

  13. P. Fuentealba (2004). Chem. Phys. Lett. 397, 459.

    Article  CAS  Google Scholar 

  14. C. Lupinetti and A. J. Thakkar (2005). J. Chem. Phys. 122, 044301.

    Article  Google Scholar 

  15. E.-A. Reinsch and W. Meyer (1976). Phys. Rev. A 14, 915.

    Article  CAS  Google Scholar 

  16. J. Stiehler and J. Hinze (1995). J. Phys. B: At. Mol. Opt. Phys. 28, 4055–4071.

    Article  CAS  Google Scholar 

  17. T. Fleig (2005). Phys. Rev. A 72, 052506.

    Article  Google Scholar 

  18. F. Jensen (2007). J. Phys. Chem. A 111, 11198.

    Article  CAS  PubMed  Google Scholar 

  19. D. Feller (1998). J. Comput. Chem. 17, 1571.

    Article  Google Scholar 

  20. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). J. Chem. Phys. 72, 650.

    Article  CAS  Google Scholar 

  21. K. A. Peterson, D. E. Woon, and T. H. Dunning (1994). J. Chem. Phys. 100, 7410.

    Article  CAS  Google Scholar 

  22. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, G. et al., Gaussian 09 (Revision E. 01) (Gaussian, Inc., Wallingford, 2013)

  23. J. D. Watts, J. Gauss, and R. J. Bartlett (1993). J. Chem. Phys. 98, 8718–8733.

    Article  CAS  Google Scholar 

  24. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon (1989). Chem. Phys. Lett. 157, 479.

    Article  CAS  Google Scholar 

  25. G. D. Purvis and R. J. Bartlett (1982). J. Chem. Phys. 76, 1910.

    Article  CAS  Google Scholar 

  26. J. Paldus and J. čížek (1975). Adv. Quantum Chem. 9, 105.

    Article  CAS  Google Scholar 

  27. R. J. Bartlett (1981). Annu. Rev. Phys. Chem. 32, 359.

    Article  CAS  Google Scholar 

  28. M. Urban, I. Černušák, V. Kellö, and J. Noga, Methods in Computational Chemistry. (Springer, Boston, MA, 1987), pp. 117–250.

    Book  Google Scholar 

  29. G. Maroulis and C. Pouchan (2003). J. Phys. B: At. Mol. Opt. 36, 2011.

    Article  CAS  Google Scholar 

  30. E. F. Archibong and A. J. Thakkar (1991). Phys. Rev. A 44, 5478.

    Article  CAS  PubMed  Google Scholar 

  31. D. M. Bishop and G. Maroulis (1985). J. Chem. Phys. 82, 2380.

    Article  CAS  Google Scholar 

  32. I. S. Lim and P. Schwerdtfeger (2004). Phys. Rev. A 70, 062501.

    Article  Google Scholar 

  33. J. Speight, Lange’s Handbook of Chemistry, 17th ed. (McGraw-Hill Education, New York, 2016).

    Google Scholar 

  34. J. Mitroy, J. Y. Zhang, M. W. J. Bromley, and K. G. Rollin (2009). Eur. Phys. J. D 53, 15.

    Article  CAS  Google Scholar 

  35. L. Hamonou and A. Hibbert (2008). J. Phys. B: At. Mol. Opt. Phys. 41, 245004.

    Article  Google Scholar 

  36. N. Reshetnikov, L. J. Curtis, M. S. Brown, and R. E. Irving (2008). Phys. Scr. 77, 015301.

    Article  Google Scholar 

  37. L. Hamonou and A. Hibbert (2007). J. Phys. B: At. Mol. Opt. Phys. 40, 3555.

    Article  CAS  Google Scholar 

  38. A. C. Lasaga and R. T. Cygan (1982). Am. Mineral. 67, 328.

    CAS  Google Scholar 

  39. J. Lahiri and A. Mukherji (1967). Phys. Rev. 153, 386.

    Article  CAS  Google Scholar 

  40. A. Serr and R. R. Netz (2006). Int. J. Quantum Chem. 106, 2960.

    Article  CAS  Google Scholar 

  41. Z. Fu, G. W. Lemire, G. A. Bishea, and M. D. Morse (1990). J. Chem. Phys. 93, 8420–8441.

    Article  CAS  Google Scholar 

  42. J. Komasa (2001). Phys. Rev. A 65, 012506.

    Article  Google Scholar 

  43. W. R. Johnson, U. I. Safronova, A. Derevianko, and M. S. Safronova (2008). Phys. Rev. A 77, 022510.

    Article  Google Scholar 

  44. M. Puchalski, D. Kędziera, and K. Pachucki (2011). Phys. Rev. A 84, 052518; Erratum (2012). Phys. Rev. A 85, 019910

  45. R. W. Molof, H. L. Schwartz, T. M. Miller, and B. Bederson (1974). Phys. Rev. A 10, 1131.

    Article  CAS  Google Scholar 

  46. D. Tunega, J. Noga, and W. Klopper (1997). Chem. Phys. Lett. 269, 435.

    Article  CAS  Google Scholar 

  47. H.-J. Werner and W. Meyer (1976). Phys. Rev. A 13, 13.

    Article  CAS  Google Scholar 

  48. K. Anderson and A. J. Sadlej (1992). Phys. Rev. A 46, 2356.

    Article  Google Scholar 

  49. A. K. Das and A. J. Thakkar (1998). J. Phys. B: At. Mol. Opt. Phys. 31, 2215.

    Article  CAS  Google Scholar 

  50. C. Thierfelder, B. Assadollahzadeh, P. Schwerdtfeger, S. Schäfer, and R. Schäfer (2008). Phys. Rev. A 78, 052506.

    Article  Google Scholar 

  51. A. J. Thakkar and C. Lupinetti (2005). Chem. Phys. Lett. 402, 270.

    Article  CAS  Google Scholar 

  52. S. Chattopadhyay, B. K. Mani, and D. Angom (2014). Phys. Rev. A 89, 022506.

    Article  Google Scholar 

  53. B. K. Sahoo and B. P. Das (2008). Phys. Rev. A 77, 062516.

    Article  Google Scholar 

  54. A. Sadlej and M. Urban (1991). J. Mol. Struct. (Theochem). 234, 147.

    Article  Google Scholar 

  55. G. S. Sarkisov, I. L. Beigman, B. P. Shevelko, and K. W. Struve (2006). Phys. Rev. A 73, 042501.

    Article  Google Scholar 

  56. U. Hohm and A. J. Thakkar (2012). J. Phys. Chem. A 116, 697.

    Article  CAS  PubMed  Google Scholar 

  57. https://www.physics.nist.gov/PhysRefData/Handbook/Tables/aluminumtable5.htm. Accessed 22 Sept 2021.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11774255, the National Basic Research Program of China No. 2020YFC2004602 and the Key Project of National Science Foundation of Tian** City No. 17JCZDJC30100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Fang, SZ., Fan, Z. et al. Reconciliation of the Theoretical and Experimental Value of the Static Electric Polarizability of the Aluminum Atom. J Clust Sci 34, 2147–2151 (2023). https://doi.org/10.1007/s10876-022-02377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02377-5

Keywords

Navigation