Log in

Bioreduction and Stabilization of Antibacterial Nanosilver Using Radix Lithospermi Phytonutrients for Azo-contaminated Wastewater Treatment: Synthesis, Optimization and Characterization

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Radix Lithospermi phytonutrients were used to reduce and stabilize the biosynthesized silver nanoparticles (AgNPs). The bioreduction kinetics were explored utilizing a one-variable-at-a-time technique to understand the effects of process parameters. Intense yellow color and a strong peak at 406 nm in the UV–Vis absorption spectra indicated the successful synthesis of AgNPs. The optimized condition showed nano size (12.44 ± 2.5 nm) spherical particles with crystalline (d-spacing = 0.234 nm) nature and well stabilized (zeta potential = − 16.9 mV) by being encapsulated with plant phytonutrients. The XRD confirms the structures of the particles are correlated with crystallographic planes of the face-centered cubic structure of metallic Ag-crystals. The biogenic AgNPs showed excellent antibacterial activity with a bacterial reduction of 93.08% on S. aureus (zones of inhibition = 7.19 ± 0.91 mm) and 91.67% on E. coli (zones of inhibition = 6.23 ± 0.85 mm). The catalytic performance demonstrates nearly 100% dye degradation within 20 min with the kinetic constants (k) of 0.04945 min−1 (r2 = 0.9878) and 0.3235 min−1 (r2 = 0.9363) for mordant blue and naphthol blue-black, respectively. The current study proposes a simple/green synthesis of AgNPs that may be a viable option for bacterial reduction and wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. G. Panthi, M. Park, H.-Y. Kim, S.-Y. Lee, and S.-J. Park (2015). Electrospun ZnO hybrid nanofibers for photodegradation of wastewater containing organic dyes: a review. J. Ind. Eng. Chem. 21, 26. https://doi.org/10.1016/j.jiec.2014.03.044.

    Article  CAS  Google Scholar 

  2. M. N. Rashed (2013). Adsorption technique for the removal of organic pollutants from water and wastewater Organic pollutants-monitoring, risk and treatment. IntechOpen 7, 167. https://doi.org/10.5772/54048.

    Article  CAS  Google Scholar 

  3. M. M. Rahman, T. M. A. Haque, N. S. Sourav, et al. (2021). Synthesis and investigation of dyeing properties of 8-hydroxyquinoline-based azo dyes. J Iran Chem Soc. https://doi.org/10.1007/s13738-020-02070-2.

    Article  Google Scholar 

  4. R. Mia, M. Selim, A. Shamim, et al. (2019). Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation. J Textile Eng Fashion Technol. https://doi.org/10.15406/jteft.2019.05.00205.

    Article  Google Scholar 

  5. M. Zhou, X. Hu, X. Xu, et al. (2022). Controlled synthesis of silver/silver chloride composite crystals from [AgCl2]-complex and its photocatalysis properties on organic pollutants. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2022.128984.

    Article  Google Scholar 

  6. Y. Yang, Q. Lai, S. Mahmud, et al. (2022). Potocatalytic antifouling membrane with dense nano-TiO2 coating for efficient oil-in-water emulsion separation and self-cleaning. J. Membr. Sci. 645, 120204. https://doi.org/10.1016/j.memsci.2021.120204.

    Article  CAS  Google Scholar 

  7. Q. Bingqiang and W. Zhansheng (2000). Application of biological aerated filter in wastewater treatment. Water Waste. Eng. 26 (10), 4–8.

    Google Scholar 

  8. C. Y. Teh, P. M. Budiman, K. P. Y. Shak, and T. Y. Wu (2016). Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.5b04703.

    Article  Google Scholar 

  9. A. A. Siyal, M. R. Shamsuddin, A. Low, and N. E. Rabat (2020). A review on recent developments in the adsorption of surfactants from wastewater. J Environ Manage. https://doi.org/10.1016/j.jenvman.2019.109797.

    Article  PubMed  Google Scholar 

  10. M. Goosen, S. Sablani, H. Al-Hinai, S. Al-Obeidani, R. Al-Belushi, and A Jackson, (2005). Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Sep Sci Technol. https://doi.org/10.1081/SS-120039343.

    Article  Google Scholar 

  11. P.S. Kumar, and A. Saravanan, (2017). Sustainable fibres and textiles, Elsevier, 1st Edition. https://doi.org/10.1016/B978-0-08-102041-8.00001-9.

  12. T. Ahmed, R. Mia, G. F. I. Toki, et al. (2021). Evaluation of sizing parameters on cotton using the modified sizing agent. Cleaner Eng. Technol. 5, 100320. https://doi.org/10.1016/j.clet.2021.100320.

    Article  Google Scholar 

  13. F. Qu, A. Cao, Y. Yang, et al. (2021). Hierarchically superhydrophilic poly (vinylidene fluoride) membrane with self-cleaning fabricated by surface mineralization for stable separation of oily wastewater. J. Membr. Sci. 640, 119864. https://doi.org/10.1016/j.memsci.2021.119864.

    Article  CAS  Google Scholar 

  14. Y. Tian, Y. Shu, X. Zhang, S. Mahmud, J. Zhu, and S. Su (2020). Electrospun PVDF-Ag@ AgCl porous fiber membrane: stable antifoul and antibacterial surface. Surf. Innov. 9, 156. https://doi.org/10.1680/jsuin.20.00050.

    Article  Google Scholar 

  15. M. T. Khan, M. A. Al Mamun, M. Rony, X. Anchang, and MM Rashid (2021). Effect of different solvent systems on fiber morphology and property of electrospun PCL nano fibers. Tekstil ve Mühendis. https://doi.org/10.7216/1300759920212812201.

    Article  Google Scholar 

  16. A. M. Le Marechal, B. Križanec, S. Vajnhandl, and J. V. Valh (2012). Organic pollutants ten years after the Stockholm convention-environmental and analytical update. IntechOpen. https://doi.org/10.5772/1381.

    Article  Google Scholar 

  17. R. Mia, M. M. Islam, T. Ahmed, et al. (2022). Natural dye extracted from Triadica sebifera in aqueous medium for sustainable dyeing and functionalizing of viscose fabric. Cleaner Eng. Technol. 8, 100471. https://doi.org/10.1016/j.clet.2022.100471.

    Article  Google Scholar 

  18. S.-S. Yang, X.-L. Yu, M.-Q. Ding, et al. (2021). Simulating a combined lysis-cryptic and biological nitrogen removal system treating domestic wastewater at low C/N ratios using artificial neural network. Water Res. 189, 116576. https://doi.org/10.1016/j.watres.2020.116576.

    Article  CAS  PubMed  Google Scholar 

  19. A. T. B. Abadi, A. A. Rizvanov, T. Haertlé, and N. L. Blatt (2019). World Health Organization report: current crisis of antibiotic resistance. BioNanoSci. https://doi.org/10.1007/s12668-019-00658-4.

    Article  Google Scholar 

  20. P. V. Baptista, M. P. McCusker, A. Carvalho, et al. (2018). Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans.” Front. Microbiol. 9, 1441. https://doi.org/10.3389/fmicb.2018.01441.

    Article  PubMed  PubMed Central  Google Scholar 

  21. M. A. Haque, R. Mia, S. T. Mahmud, et al. (2022). Sustainable dyeing and functionalization of wool fabrics with black rice extract. Resour Environ Sustain. https://doi.org/10.1016/j.resenv.2021.100045.

    Article  Google Scholar 

  22. P. K. Saha, R. Mia, Y. Zhou, and T. Ahmed (2021). Functionalization of hydrophobic nonwoven cotton fabric for oil and water repellency. SN Appl Sci. https://doi.org/10.1007/s42452-021-04582-9.

    Article  Google Scholar 

  23. R. Mia, M. S. Sk, Z. B. S. Oli, T. Ahmed, S. Kabir, and M. A. Waqar (2021). Functionalizing cotton fabrics through herbally synthesized nanosilver. Cleaner Eng Technol. https://doi.org/10.1016/j.clet.2021.100227.

    Article  Google Scholar 

  24. H. You, S. Yang, B. Ding, and H. Yang (2013). Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev. https://doi.org/10.1039/C2CS35319A.

    Article  PubMed  Google Scholar 

  25. L. He, M.-X. Li, F. Chen, et al. (2021). Novel coagulation waste-based Fe-containing carbonaceous catalyst as peroxymonosulfate activator for pollutants degradation: role of ROS and electron transfer pathway. J. Hazard. Mater. 417, 126113. https://doi.org/10.1016/j.jhazmat.2021.126113.

    Article  CAS  PubMed  Google Scholar 

  26. G. Li, S. Huang, N. Zhu, H. Yuan, D. Ge, and Y. Wei (2021). Defect-rich heterojunction photocatalyst originated from the removal of chloride ions and its degradation mechanism of norfloxacin. Chem. Eng. J. 421, 127852. https://doi.org/10.1016/j.cej.2020.127852.

    Article  CAS  Google Scholar 

  27. K. Lavanya, D. Kalaimurugan, M. S. Shivakumar, and S. Venkatesan (2020). Gelatin stabilized silver nanoparticle provides higher antimicrobial efficiency as against chemically synthesized silver nanoparticle. J Cluster Sci. https://doi.org/10.1007/s10876-019-01644-2.

    Article  Google Scholar 

  28. M. Gomathi, A. Prakasam, R. Chandrasekaran, G. Gurusubramaniam, K. Revathi, and S. Rajeshkumar (2019). Assessment of silver nanoparticle from Cocos nucifera (coconut) shell on dengue vector toxicity, detoxifying enzymatic activity and predatory response of aquatic organism. J. Cluster Sci. 30, 1525. https://doi.org/10.1007/s10876-019-01596-7.

    Article  CAS  Google Scholar 

  29. N. Kamarudin, R. Jusoh, N. Sukor, A. Jalil, H. Setiabudi, and N. Salleh (2021). Facile electro-assisted green synthesis of size-tunable silver nanoparticles and its photodegradation activity. J Cluster Sci. https://doi.org/10.1007/s10876-021-02028-1.

    Article  Google Scholar 

  30. G. Li, S. Huang, N. Zhu, H. Yuan, and D. Ge (2021). Near-infrared responsive upconversion glass-ceramic@ BiOBr heterojunction for enhanced photodegradation performances of norfloxacin. J. Hazard. Mater. 403, 123981. https://doi.org/10.1016/j.jhazmat.2020.123981.

    Article  CAS  PubMed  Google Scholar 

  31. C. D. De Souza, B. R. Nogueira, and M. E. C. Rostelato (2019). Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J. Alloys Compd. 798, 714. https://doi.org/10.1016/j.jallcom.2019.05.153.

    Article  CAS  Google Scholar 

  32. A. V. Rane, K. Kanny, V. Abitha, and S. Thomas (2018). Synthesis of inorganic nanomaterials, Elsevier, 1st edition. https://doi.org/10.1016/C2016-0-01718-7.

  33. A. V. Rane, K. Kanny, V. K. Abitha, and S. Thomas (2018). in Mohan Bhagyaraj S, Oluwafemi OS, Kalarikkal N, Thomas S (eds), Synthesis of Inorganic Nanomaterials, Woodhead Publishing 1–18, https://doi.org/10.1016/B978-0-08-101975-7.00001-4

  34. E. K. Goharshadi and H. Azizi-Toupkanloo (2013). Silver colloid nanoparticles: ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol. 237, 97. https://doi.org/10.1016/j.powtec.2012.12.059.

    Article  CAS  Google Scholar 

  35. Z. Wang, S. Lü, F. Yang, S. F. Kabir, S. Mahmud, and H. Liu (2021). Hyaluronate macromolecules reduced-stabilized colloidal palladium nanocatalyst for azo contaminated wastewater treatment. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2021.127345.

    Article  Google Scholar 

  36. M. S. Sk, R. Mia, B. Ahmed, A. Rahman, and M. M. R. Palash (2021). Effect of neutralizers and silicone softeners on phenolic yellowing phenomenon of OBA treated cotton knitted fabric. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e08320.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Y. **ong, L. Huang, S. Mahmud, F. Yang, and H. Liu (2020). Bio-synthesized palladium nanoparticles using alginate for catalytic degradation of azo-dyes. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2020.02.014.

    Article  Google Scholar 

  38. V. Thangaraj, S. Mahmud, W. Li, F. Yang, and H. Liu (2017). Greenly synthesised silver-alginate nanocomposites for degrading dyes and bacteria. IET Nanobiotechnol. https://doi.org/10.1049/iet-nbt.2017.0074.

    Article  PubMed Central  Google Scholar 

  39. X. Zhang, C. Huang, S. Mahmud, et al. (2021). Sodium alginate fasten cellulose nanocrystal Ag@AgCl ternary nanocomposites for the synthesis of antibacterial hydrogels. Compos Commun. https://doi.org/10.1016/j.coco.2021.100717.

    Article  Google Scholar 

  40. S. Mahmud, M. Sultana, M. Pervez, M. Habib, and H.-H. Liu (2017). Surface functionalization of “Rajshahi Silk” using green silver nanoparticles. Fibers. https://doi.org/10.3390/fib5030035.

    Article  Google Scholar 

  41. S. Mahmud, N. Pervez, M. A. Taher, K. Mohiuddin, and H.-H. Liu (2020). Multifunctional organic cotton fabric based on silver nanoparticles green synthesized from sodium alginate. Text Res J. https://doi.org/10.1177/0040517519887532.

    Article  Google Scholar 

  42. S. Mahmud, M. N. Pervez, K. F. Hasan, M. A. Taher, and H.-H. Liu (2019). In situ synthesis of green AgNPs on ramie fabric with functional and catalytic properties. Emerging Mater Res. https://doi.org/10.1680/jemmr.19.00012.

    Article  Google Scholar 

  43. G. Li, L. Liu, Y. Sun, and H. Liu (2018). Ecofriendly synthesis of silver–carboxy methyl cellulose nanocomposites and their antibacterial activity. J Cluster Sci. https://doi.org/10.1007/s10876-018-1426-y.

    Article  Google Scholar 

  44. K. F. Hasan, H. Wang, S. Mahmud, M. A. Taher, and C. Genyang (2020). Wool functionalization through AgNPs: coloration, antibacterial, and wastewater treatment. Surf Innov. https://doi.org/10.1680/jsuin.20.00031.

    Article  Google Scholar 

  45. K. Hasan, M. Pervez, M. Talukder, et al. (2019). A novel coloration of polyester fabric through green silver nanoparticles (G-AgNPs@ PET). Nanomaterials 9, 569. https://doi.org/10.3390/nano9040569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. K. M. F. Hasan, H. Wang, S. Mahmud, and C. Genyang (2020). Coloration of aramid fabric via in-situ biosynthesis of silver nanoparticles with enhanced antibacterial effect. Inorg. Chem. Commun. 119, 108115. https://doi.org/10.1016/j.inoche.2020.108115.

    Article  CAS  Google Scholar 

  47. K. M. F. Hasan, H. Wang, S. Mahmud, et al. (2020). Colorful and antibacterial nylon fabric via in-situ biosynthesis of chitosan mediated nanosilver. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2020.11.056.

    Article  Google Scholar 

  48. X. Chen, J. Fang, S. Liao, et al. (2021). A smart chitosan nonwoven fabric coated with coumarin-based fluorophore for selective detection and efficient adsorption of mercury (II) in water. Sens Actuators B. https://doi.org/10.1016/j.snb.2021.130064.

    Article  Google Scholar 

  49. H. Wang, G. Zhang, R. Mia, et al. (2021). Bioreduction (Ag+ to Ag0) and stabilization of silver nanocatalyst using hyaluronate biopolymer for azo-contaminated wastewater treatment. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.162502.

    Article  Google Scholar 

  50. Y. **ong, H. Wan, M. Islam, et al. (2021). Hyaluronate macromolecules assist bioreduction (AuIII to Au0) and stabilization of catalytically active gold nanoparticles for azo contaminated wastewater treatment. Environ Technol Innovation. https://doi.org/10.1016/j.eti.2021.102053.

    Article  Google Scholar 

  51. J. Chen, Y. Liu, Y. **ong, et al. (2021). Konjac glucomannan reduced-stabilized silver nanoparticles for mono-azo and di-azo contained wastewater treatment. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2020.120058.

    Article  Google Scholar 

  52. J. Chen, D. Wei, Y. Liu, et al. (2020). Gold/Konjac glucomannan bionanocomposites for catalytic degradation of mono-azo and di-azo dyes. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2020.108156.

    Article  Google Scholar 

  53. J. Chen, D. Wei, L. Liu, et al. (2021). Green synthesis of Konjac glucomannan templated palladium nanoparticles for catalytic reduction of azo compounds and hexavalent chromium. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2021.124651.

    Article  Google Scholar 

  54. H. Wan, Z. Liu, Q. He, D. Wei, S. Mahmud, and H. Liu (2021). Bioreduction (AuIII to Au0) and stabilization of gold nanocatalyst using Kappa carrageenan for degradation of azo dyes. Int. J. Biol. Macromol. 176, 282–290. https://doi.org/10.1016/j.ijbiomac.2021.02.085.

    Article  CAS  PubMed  Google Scholar 

  55. H. Wan, C. Li, S. Mahmud, and H. Liu (2021). Kappa carrageenan reduced-stabilized colloidal silver nanoparticles for the degradation of toxic azo compounds. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2021.126325.

    Article  Google Scholar 

  56. L. Huang, Y. Sun, S. Mahmud, and H. Liu (2019). Biological and environmental applications of silver nanoparticles synthesized using the aqueous extract of Ginkgo biloba leaf. J. Inorg. Organomet. Polym Mater. 30, 1653. https://doi.org/10.1007/s10904-019-01313-x.

    Article  CAS  Google Scholar 

  57. Y. Liu, L. Huang, S. Mahmud, and H. Liu (2020). Gold nanoparticles biosynthesized using Ginkgo biloba leaf aqueous extract for the decolorization of azo-dyes and fluorescent detection of Cr (VI). J. Cluster Sci. 31, 549. https://doi.org/10.1007/s10876-019-01673-x.

    Article  CAS  Google Scholar 

  58. S. Lü, Y. Wu, and H. Liu (2017). Silver nanoparticles synthesized using Eucommia ulmoides bark and their antibacterial efficacy. Mater. Lett. 196, 217–220. https://doi.org/10.1016/j.matlet.2017.03.068.

    Article  CAS  Google Scholar 

  59. V. Staniforth, S.-Y. Wang, L.-F. Shyur, and N.-S. Yang (2004). Shikonins, phytocompounds from Lithospermum erythrorhizon, inhibit the transcriptional activation of human tumor necrosis factor α promoter in vivo. J Biol Chem. https://doi.org/10.1074/jbc.M309185200.

    Article  PubMed  Google Scholar 

  60. X. Weng, G. **ang, A. Jiang, et al. (2000). Antioxidant properties of components extracted from puccoon (Lithospermum erythrorhizon Sieb. et Zucc.). Food Chem. https://doi.org/10.1016/S0308-8146(99)00236-8.

    Article  Google Scholar 

  61. C.-H. Yao, K.-Y. Chen, Y.-S. Chen, S.-J. Li, and C.-H. Huang (2019). Lithospermi radix extract-containing bilayer nanofiber scaffold for promoting wound healing in a rat model. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2018.11.053.

    Article  Google Scholar 

  62. B.-Y. Yang, C.-H. Hu, W.-C. Huang, C.-Y. Ho, C.-H. Yao, and C.-H. Huang (2019). Effects of bilayer nanofibrous scaffolds containing curcumin/lithospermi radix extract on wound healing in streptozotocin-induced diabetic rats. Polymers 11, 1745(11). https://doi.org/10.3390/polym11111745

  63. T. Zhang, X. Wu, S. M. Shaheen, et al. (2022). Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes. J. Hazard. Mater. 425, 127906. https://doi.org/10.1016/j.jhazmat.2021.127906.

    Article  CAS  PubMed  Google Scholar 

  64. L. Zhang, Y. Xu, H. Liu, et al. (2021). Effects of coexisting Na+, Mg2+ and Fe3+ on nitrogen and phosphorus removal and sludge properties using A2O process. J. Water Process Eng. 44, 102368. https://doi.org/10.1016/j.jwpe.2021.102368.

    Article  Google Scholar 

  65. L. Zhang, L. Wang, Y. Zhang, et al. (2022). The performance of electrode ultrafiltration membrane bioreactor in treating cosmetics wastewater and its anti-fouling properties. Environ. Res. 206, 112629. https://doi.org/10.1016/j.envres.2021.112629.

    Article  CAS  PubMed  Google Scholar 

  66. C. Shi, Z. Wu, F. Yang, and Y. Tang (2021). Janus particles with pH switchable properties for high-efficiency adsorption of PPCPs in water. Solid State Sci. 119, 106702. https://doi.org/10.1016/j.solidstatesciences.2021.106702.

    Article  CAS  Google Scholar 

  67. Yu. Z-f, S. Song, Xu. X-l, Q. Ma, and Y. Lu (2021). Sources, migration, accumulation and influence of microplastics in terrestrial plant communities. Environ. Exp. Bot. 192, 104635. https://doi.org/10.1016/j.envexpbot.2021.104635.

    Article  Google Scholar 

  68. H Lu, T Wei, H Lou, X Shu, Q Chen (2021). A critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses. J. Fungi 7, 719(9). https://doi.org/10.3390/jof7090719

  69. F. Chen, J. Ma, Y. Zhu, X. Li, H. Yu, and Y. Sun (2022). Biodegradation performance and anti-fouling mechanism of an ICME/electro-biocarriers-MBR system in livestock wastewater (antibiotic-containing) treatment. J. Hazard. Mater. 426, 128064. https://doi.org/10.1016/j.jhazmat.2021.128064.

    Article  CAS  PubMed  Google Scholar 

  70. M Zhang, H Zhu, B **, et al. (2022). Surface Hydrophobic Modification of Biochar by Silane Coupling Agent KH-570. Processes 10, 301(2). https://doi.org/10.3390/pr10020301

  71. H Jiang, R Guo, R Mia, et al. (2022). Eco-friendly dyeing and finishing of organic cotton fabric using natural dye (gardenia yellow) reduced-stabilized nanosilver: full factorial design. Cellulose 29, 2663(4). https://doi.org/10.1007/s10570-021-04401-9

  72. R Mofidian, A Barati, M Jahanshahi, MH Shahavi (2019). Optimization on thermal treatment synthesis of lactoferrin nanoparticles via Taguchi design method. SN Appl. Sci. 1, 1(11). https://doi.org/10.1007/s42452-019-1353-z

  73. KJ Rao, S Paria (2015). Aegle marmelos leaf extract and plant surfactants mediated green synthesis of Au and Ag nanoparticles by optimizing process parameters using Taguchi method. ACS Sustainable Chem. Eng. 3, 483(3). https://doi.org/10.1021/acssuschemeng.5b00022

  74. L Huang, Y Sun, S Mahmud, H Liu (2020). Biological and environmental applications of silver nanoparticles synthesized using the aqueous extract of Ginkgo biloba leaf. J. Inorg. Organomet. Polym Mater. 30, 1653(5). https://doi.org/10.1007/s10904-019-01313-x

  75. B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. **a (2006). Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. J. Phys. Chem. B 110 (32), 15666–15675. https://doi.org/10.1021/jp0608628.

    Article  CAS  PubMed  Google Scholar 

  76. A. J. Padman, J. Henderson, S. Hodgson, and P. K. Rahman (2014). Biomediated synthesis of silver nanoparticles using Exiguobacterium mexicanum. Biotechnol Lett. https://doi.org/10.1007/s10529-014-1579-1.

    Article  PubMed  Google Scholar 

  77. M. F. Lengke, M. E. Fleet, and G. Southam (2007). Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir. https://doi.org/10.1021/la0613124.

    Article  PubMed  Google Scholar 

  78. M. Vijayakumar, K. Priya, F. Nancy, A. Noorlidah, and A. Ahmed (2013). Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind. Crops Prod. 41, 235. https://doi.org/10.1016/j.indcrop.2012.04.017.

    Article  CAS  Google Scholar 

  79. M. Khatami, I. Sharifi, M. A. Nobre, N. Zafarnia, and M. R. Aflatoonian (2018). Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chem Lett Rev. https://doi.org/10.1080/17518253.2018.1444797.

    Article  Google Scholar 

  80. A. Maniraj, M. Kannan, K. Rajarathinam, S. Vivekanandhan, and S. Muthuramkumar (2019). Green synthesis of silver nanoparticles and their effective utilization in fabricating functional surface for antibacterial activity against multi-drug resistant Proteus mirabilis. J Cluster Sci. https://doi.org/10.1007/s10876-019-01582-z.

    Article  Google Scholar 

  81. O. Bulut and M. D. Yilmaz (2021). Catalytic evaluation of biocompatible chitosan-stabilized gold nanoparticles on oxidation of morin. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.117699.

    Article  PubMed  Google Scholar 

  82. M. V. Sujitha and S. Kannan (2013). Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta, Part A 102, 15. https://doi.org/10.1016/j.saa.2012.09.042.

    Article  CAS  Google Scholar 

  83. H. Mistry, R. Thakor, C. Patil, J. Trivedi, and H. Bariya (2021). Biogenically proficient synthesis and characterization of silver nanoparticles employing marine procured fungi Aspergillus brunneoviolaceus along with their antibacterial and antioxidative potency. Biotechnol Lett. https://doi.org/10.1007/s10529-020-03008-7.

    Article  PubMed  Google Scholar 

  84. B. Sirakov (2009). Some estimates and maximum principles for weakly coupled systems of elliptic PDE. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 70, 3039(8). https://hal.archives-ouvertes.fr/hal-00351672

  85. S. Zhou, W. Wang, Y. Sun, X. Tang, B. Zhang, and X. Yao (2021). Antibacterial effect of Ag-PMANa modified cotton. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2021.126453.

    Article  Google Scholar 

  86. C.-H. Xue, J. Chen, W. Yin, S.-T. Jia, and J.-Z. Ma (2012). Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2011.10.074.

    Article  Google Scholar 

  87. C. K. Kang, S. S. Kim, S. Kim, et al. (2016). Antibacterial cotton fibers treated with silver nanoparticles and quaternary ammonium salts. Carbohydr. Polym. 151, 1012. https://doi.org/10.1016/j.carbpol.2016.06.043.

    Article  CAS  PubMed  Google Scholar 

  88. A. Salayová, Z. Bedlovičová, N. Daneu, et al. (2021). Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: morphology and antibacterial efficacy. Nanomaterials. https://doi.org/10.3390/nano11041005.

    Article  PubMed  PubMed Central  Google Scholar 

  89. V. Thangaraj, S. Mahmud, W. Li, F. Yang, and H. Liu (2018). Greenly synthesised silver-alginate nanocomposites for degrading dyes and bacteria. IET Nanobiotechnol. 12, 47. https://doi.org/10.1049/iet-nbt.2017.0074.

    Article  Google Scholar 

  90. Y. Meng and Y. Sun (2016). Development of biogenic silver nanoparticle using Rosa chinensis flower extract and its antibacterial property. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2016.11899.

    Article  PubMed  Google Scholar 

  91. K. Chand, D. Cao, D. E. Fouad, et al. (2020). Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arabian J Chem. https://doi.org/10.1016/j.arabjc.2020.01.009.

    Article  Google Scholar 

  92. N. Gupta, H. P. Singh, and R. K. Sharma (2011). Metal nanoparticles with high catalytic activity in degradation of methyl orange: an electron relay effect. J Mol Catal A Chem. https://doi.org/10.1016/j.molcata.2010.12.001.

    Article  Google Scholar 

  93. K. Mallick, M. Witcomb, and M. Scurrell (2006). Silver nanoparticle catalysed redox reaction: an electron relay effect. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2005.08.011.

    Article  Google Scholar 

  94. M. Nemanashi and R. Meijboom (2013). Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2012.09.012.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the kind support of this work from the Key Laboratory of Biomass Fibers & Eco-Dyeing and Finishing, Hubei Province (Grant Nos. STRZ2020001, STRZ2020011) and the Department of Education, Hubei Province (B2021320).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huihong Liu or Sakil Mahmud.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Wan, H., Mia, R. et al. Bioreduction and Stabilization of Antibacterial Nanosilver Using Radix Lithospermi Phytonutrients for Azo-contaminated Wastewater Treatment: Synthesis, Optimization and Characterization. J Clust Sci 34, 1141–1155 (2023). https://doi.org/10.1007/s10876-022-02280-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02280-z

Keywords

Navigation