Log in

Ag Nanoflowers and Nanodendrites Synthesized by a Facile Method and Their Antibacterial Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) have been widely studied due to their interesting physicochemical properties and remarkable antibacterial properties. Chemical synthesis methods, including green chemistry, have achieved 0D nanostructures. However, ecological methods have little studied self-assembling Ag nanostructures, such as flowers or dendrites. In this work, Ag dendrites and Ag flower-like morphologies have been successfully synthesized using a one-step green method employing Arctostaphylos pungens Kunth fruit extract at room temperature. The antibacterial properties of both nanostructures were evaluated against Gram-positive Escherichia coli and Gram-negative Staphylococcus aureus bacteria. Scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–Vis), and infrared spectroscopy (IR) characterized the synthesized products. The morphological changes of the nanostructures come from the variation in the concentration of the precursor salt, silver nitrate (AgNO3). A growth mechanism is proposed that includes the formation of nanospheres and their subsequent transformation into Ag dendrites. Both nanostructures show good antibacterial activity against the tested microorganisms. The Ag dendritic nanostructures presented inhibition zones of 11 mm and 10.7 mm against Escherichia coli and Staphylococcus aureus bacteria. However, the flower-like structure was slightly less effective, presenting 11 and 9.5 mm inhibition zones against the same microorganisms, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. E. Roduner (2006). Chem Soc Rev. https://doi.org/10.1039/B502142C.

    Article  PubMed  Google Scholar 

  2. V. P. Sharma, U. Sharma, M. Chattopadhyay, and V. N. Shukla (2018). Mater Today. https://doi.org/10.1016/j.matpr.2017.12.248.

    Article  Google Scholar 

  3. T. Maiyalagan (2008). Appl Catal A. https://doi.org/10.1016/j.apcata.2008.02.016.

    Article  Google Scholar 

  4. H. Xu, C. Kan, C. Miao, C. Wang, J. Wei, Y. Ni, B. Lu, and D. Shi (2017). Photonics Res. https://doi.org/10.1364/PRJ.5.000027.

    Article  Google Scholar 

  5. Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. S. May (2011). J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2010.12.077.

    Article  PubMed  Google Scholar 

  6. J. Atkinson and I. A. Goldthorpe (2020). Nanotechnology. https://doi.org/10.1088/1361-6528/ab94de.

    Article  PubMed  Google Scholar 

  7. M. Villalpando, A. Saavedra-Molina, and G. Rosas (2020). Mater Sci Eng. https://doi.org/10.1016/j.msec.2020.110973.

    Article  Google Scholar 

  8. J. Y. Kim and J. S. Lee (2010). Chem Mater. https://doi.org/10.1021/cm102984m.

    Article  Google Scholar 

  9. X. Zeng, S. Yan, C. Di, M. Lei, P. Chen, W. Du, Y. **, B. F. Liu, and A. C. S. Appl (2020). Mater Interfaces. https://doi.org/10.1021/acsami.9b21166.

    Article  Google Scholar 

  10. P. N. Silva-Holguín and S. Y. Reyes-López (2021). Dose–Response. https://doi.org/10.1177/15593258211011337.

    Article  PubMed  PubMed Central  Google Scholar 

  11. K. Chávez and G. Rosas (2021). J Sol–Gel Sci Technol. https://doi.org/10.1007/s10971-020-05463-0.

    Article  Google Scholar 

  12. R. Ma, B. Kang, S. Cho, M. Choi, and S. Baik (2015). ACS Nano. https://doi.org/10.1021/acsnano.5b03864.

    Article  PubMed  PubMed Central  Google Scholar 

  13. X. Ma, Q. Guo, Y. **e, and H. Ma (2016). Chem Phys Lett. https://doi.org/10.1016/j.cplett.2016.04.004.

    Article  Google Scholar 

  14. Q. Chang, X. Shi, X. Liu, J. Tong, D. Liu, and Z. Wang (2017). Nanophotonics. https://doi.org/10.1515/nanoph-2017-0010.

    Article  Google Scholar 

  15. B. Song, X. Wang, S. Patel, F. Wu, K. S. Moon, and C. P. Wong (2020). Soft Matter. https://doi.org/10.1039/D0SM00908C.

    Article  PubMed  Google Scholar 

  16. W. Liu, T. Yang, J. Liu, P. Che, and Y. Han (2016). Ind Eng Chem. https://doi.org/10.1021/acs.iecr.6b01227.

    Article  Google Scholar 

  17. S. Deb and D. Sarkar (2021). Polym Bull. https://doi.org/10.1007/s00289-019-03097-z.

    Article  Google Scholar 

  18. K. Chávez, S. J. Figueroa-Ramírez, C. Patiño-Carachure, and G. Rosas (2021). Appl Phys A. https://doi.org/10.1007/s00339-020-04190-1.

    Article  Google Scholar 

  19. S. Roy, C. M. Ajmal, S. Baik, and J. Kim (2017). Nanotechnology. https://doi.org/10.1088/1361-6528/aa8c57.

    Article  PubMed  Google Scholar 

  20. Z. Huang, A. Zhang, Q. Zhang, S. Pan, and D. Cui (2019). J Electrochem Soc. https://doi.org/10.1149/2.0471913jes.

    Article  Google Scholar 

  21. E. Aparicio-Martínez, I. A. Estrada-Moreno, and R. B. Dominguez (2020). Mater Lett. https://doi.org/10.1016/j.matlet.2020.128380.

    Article  Google Scholar 

  22. N. Grevtsov, A. Burko, S. Redko, N. Khinevich, S. Zavatski, S. Niauzorau, and H. Bandarenka (2020). MRS Adv. https://doi.org/10.1557/adv.2020.332.

    Article  Google Scholar 

  23. G. A. El-Nagar, R. M. Sarhan, A. Abouserie, N. Maticiuc, M. Bargheer, I. Lauermann, and C. Roth (2017). Sci Rep. https://doi.org/10.1038/s41598-017-11965-9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. R. Nistico, P. Rivolo, C. Novara, and F. Giorgis (2019). Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2019.123600.

    Article  Google Scholar 

  25. Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan (2019). Appl Phys Lett. https://doi.org/10.1063/1.5079241.

    Article  PubMed  PubMed Central  Google Scholar 

  26. H. V. Bandarenka, N. V. Khinevich, A. A. Burko, S. V. Redko, S. A. Zavatski, U. A. Shapel, Z. K. Mamatkulov, M. Y. Vorobyeva, and G. M. Arzumanyan (2021). ChemNanoMat. https://doi.org/10.1002/cnma.202000521.

    Article  Google Scholar 

  27. W. Zhang, F. Tan, W. Wang, X. Qiu, X. Qiao, and J. Chen (2012). J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2012.01.056.

    Article  PubMed  PubMed Central  Google Scholar 

  28. A. K. Raj, C. Murugan, P. Rameshkumar, and A. Pandikumar (2020). Appl Surf Sci. https://doi.org/10.1016/j.apsadv.2020.100035.

    Article  Google Scholar 

  29. G. Yao, X. Shao, Z. Qiu, F. Qiu, and T. Zhang (2021). Cellulose. https://doi.org/10.1007/s10570-021-03908-5.

    Article  PubMed  Google Scholar 

  30. Z. Zhao, N. Chamele, M. Kozicki, Y. Yao, and C. Wang (2019). J Mater Chem. https://doi.org/10.1039/C9TC01473J.

    Article  Google Scholar 

  31. C. Y. Zhang, R. Hao, B. Zhao, Y. Z. Fu, Y. W. Hao, and Y. Q. Liu (2017). J Mater Sci. https://doi.org/10.1007/s10853-017-1292-2.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Z. Wang, Z. Zhao, and J. Qiu (2008). J Phys Chem Solids. https://doi.org/10.1016/j.jpcs.2007.10.089.

    Article  Google Scholar 

  33. J. Bi (2019). Mater Lett. https://doi.org/10.1016/j.matlet.2018.10.138.

    Article  Google Scholar 

  34. L. B. Gulina, V. P. Tolstoy, I. A. Kasatkin, and S. A. Fateev (2018). J Mater Sci. https://doi.org/10.1007/s10853-018-2164-0.

    Article  Google Scholar 

  35. L. Fu, T. Tamanna, W. J. Hu, and A. Yu (2014). Chem Papers. https://doi.org/10.2478/s11696-014-0582-2.

    Article  Google Scholar 

  36. L. Fu, D. Zhu, and A. Yu (2015). Spectrochimica Acta Part A. https://doi.org/10.1016/j.saa.2015.04.049.

    Article  Google Scholar 

  37. S. Liu, J. Ma, S. Wang, S. Chen, B. Wang, and J. Li (2019). Mater Lett. https://doi.org/10.1016/j.matlet.2019.126570.

    Article  Google Scholar 

  38. R. Mendoza-Reséndez, A. Gómez-Trevino, E. D. Barriga-Castro, N. O. Núñez, and C. Luna (2014). RSC Adv. https://doi.org/10.1039/C3RA45680C.

    Article  Google Scholar 

  39. V. Morales-Lozoya, H. Espinoza-Gómez, L. Z. Flores-López, E. L. Sotelo-Barrera, A. Núñez-Rivera, R. D. Cadena-Nava, G. Alonso-Nuñez, and I. A. Rivero (2021). Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.147855.

    Article  Google Scholar 

  40. S. Jadoun, R. Arif, N. K. Jangid, and R. K. Meena (2021). Environ Chem Lett. https://doi.org/10.1007/s10311-020-01074-x.

    Article  Google Scholar 

  41. S. K. Bhanja, S. K. Samanta, B. Mondal, S. Jana, J. Ray, A. Pandey, and T. Tripathy (2020). Environ Nanotechnol Monit Manag. https://doi.org/10.1016/j.enmm.2020.100341.

    Article  Google Scholar 

  42. X. Zhang, L. Fan, Y. Cui, T. Cui, S. Chen, G. Ma, W. Hou, and L. Wang (2019). Nano. https://doi.org/10.1142/S1793292020500022.

    Article  Google Scholar 

  43. Q. Dai, L. Li, C. Wang, C. Lv, Z. Su, and F. Chai (2018). Eur J Inorg Chem. https://doi.org/10.1002/ejic.201800119.

    Article  Google Scholar 

  44. H. Alhmoud, B. Delalat, X. Ceto, R. Elnathan, A. Cavallaro, K. Vasilev, and N. H. Voelcker (2016). RSC Adv. https://doi.org/10.1039/C6RA13734B.

    Article  Google Scholar 

  45. Z. Cheng, Y. Qiu, Z. Li, D. Yang, S. Ding, G. Cheng, Z. Hao, and Q. Wang (2019). Opt Mater Express. https://doi.org/10.1364/OME.9.000860.

    Article  Google Scholar 

  46. K. Carbone, M. Paliotta, L. Micheli, C. Mazzuca, I. Cacciotti, F. Nocente, A. Ciampa, and M. T. Dell’Abate (2019). Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.08.001.

    Article  Google Scholar 

  47. F. Wang, Y. Fu, H. Sheng, E. Topp, X. Jiang, Y. Zhu, and J. M. Tiedje (2021). Environ Sci Health. https://doi.org/10.1016/j.coesh.2021.100230.

    Article  Google Scholar 

  48. L. Muthukrishnan, M. Chellappa, and A. Nanda (2019). J Photochem Photobiol B. https://doi.org/10.1016/j.jphotobiol.2019.03.021.

    Article  PubMed  Google Scholar 

  49. Y. Wang, Z. Li, D. Yang, X. Qiu, Y. **e, and X. Zhang (2020). J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2020.09.027.

    Article  PubMed  PubMed Central  Google Scholar 

  50. M. Khatami, I. Sharifi, M. A. Nobre, N. Zafarnia, and M. R. Aflatoonian (2018). Green Chem Lett Rev. https://doi.org/10.1080/17518253.2018.1444797.

    Article  Google Scholar 

  51. L. Mei, S. Li, Y. Shao, C. Zhang, and J. Wang (2021). Mater Res Express. https://doi.org/10.1088/2053-1591/abd732.

    Article  Google Scholar 

  52. S. Tang, X. Meng, C. Wang, and Z. Cao (2009). Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2008.10.048.

    Article  Google Scholar 

  53. M. A. Ebrahimzadeh, A. Naghizadeh, O. Amiri, M. Shirzadi-Ahodashti, and S. Mortazavi-Derazkola (2020). Bioorg Chem. https://doi.org/10.1016/j.bioorg.2019.103425.

    Article  PubMed  Google Scholar 

  54. J. Balavijayalakshmi and V. Ramalakshmi (2017). J Appl Res Technol. https://doi.org/10.1016/j.jart.2017.03.010.

    Article  Google Scholar 

  55. M. Shahriary, H. Veisi, M. Hekmati, and S. Hemmati (2018). Mater Sci Eng. https://doi.org/10.1016/j.msec.2018.04.044.

    Article  Google Scholar 

  56. A. Syafiuddin, T. Hadibarata, M. R. Salim, A. B. Kueh, and A. A. Sari (2017). Bioprocess Biosyst Eng. https://doi.org/10.1007/S00449-017-1793-Z.

    Article  PubMed  Google Scholar 

  57. J. Du, Z. Hu, Z. Yu, H. Li, J. Pan, D. Zhao, and Y. Bai (2019). Mater Sci Eng. https://doi.org/10.1016/j.msec.2019.04.031.

    Article  Google Scholar 

  58. K. M. Soto, C. T. Quezada-Cervantes, M. Hernández-Iturriaga, G. Luna-Bárcenas, R. Vazquez-Duhalt, and S. Mendoza (2019). LWT. https://doi.org/10.1016/j.lwt.2019.01.023.

    Article  Google Scholar 

  59. O. Azizian-Shermeh, A. Einali, and A. Ghasemi (2017). Adv Powder Technol. https://doi.org/10.1016/j.apt.2017.10.001.

    Article  Google Scholar 

  60. M. Nasrollahzadeh, S. Mahmoudi-Gom Yek, N. Motahharifar, and M. G. Gorab (2019). Chem Rec. https://doi.org/10.1002/tcr.201800202.

    Article  PubMed  Google Scholar 

  61. S. F. Hashemi, N. Tasharrofi, and M. M. Saber (2020). J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.127889.

    Article  Google Scholar 

  62. M. I. Said and A. A. Othman (2019). Mater Res Express. https://doi.org/10.1088/2053-1591/ab0481.

    Article  Google Scholar 

  63. X. Li, X. Liu, and X. Liu (2021). Chem Soc Rev. https://doi.org/10.1039/D0CS00436G.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Z. Wu, X. Huang, Y. C. Li, H. **ao, and X. Wang (2018). Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2018.07.030.

    Article  PubMed  PubMed Central  Google Scholar 

  65. G. Maria, U. Eckhard, L. M. Delgado, Y. J. D. de Roo Puente, H. Mireia, F. J. Gil, and R. A. Perez (2021). Bioact Mater. https://doi.org/10.1016/j.bioactmat.2021.04.033.

    Article  Google Scholar 

  66. T. Ahmed and R. T. Ogulata (2021). J Nat Fibers. https://doi.org/10.1080/15440478.2021.1964135.

    Article  Google Scholar 

Download references

Acknowledgements

The author G. González-García thanks the financial support to CONACyT and the Research Institute in Metallurgy and Materials (UMSNH) to provide facilities.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rosas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-García, G., Borjas-García, S.E., Landeros-Paramo, L. et al. Ag Nanoflowers and Nanodendrites Synthesized by a Facile Method and Their Antibacterial Activity. J Clust Sci 34, 789–798 (2023). https://doi.org/10.1007/s10876-022-02245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02245-2

Keywords

Navigation