Log in

Structures and Chemical Bonding in NbS 2−/−/0n (n = 3–5) Clusters: Effects of Sulfur Content and Charge States

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Density functional theory and coupled cluster theory calculations are carried out to investigate the electronic and structural properties of a series of mono-niobium sulfide clusters, NbS 2−/−/0n (n = 3–5). Generalized Koopmans’ Theorem is applied to predict the vertical detachment energies and simulate the corresponding photoelectron spectra. The evolutions of geometric and electronic structures of NbS 2−/−/0n (n = 3–5) clusters with changes in sulfur content and charge states are illustrated. Intriguingly, diverse polysulfide ligands emerge in the corresponding sulfur-rich clusters, and distinct differences in the geometric and electronic structures influenced by charge states are exhibited, especially for the NbS 2−/−/05 clusters. In addition, the NbS 2−/−n are compared with the corresponding MoS −/0n clusters. Similar structural evolution and behavior of sequential sulfidation as a function of S content are indicated for these two valence-isoelectronic systems. Molecular orbital analyses are performed to analyze the chemical bonding in these niobium sulfide clusters and to elucidate their electronic and structural evolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. I. Stiefel and K. Matsumoto (eds.) Transition Metal Sulfur Chemistry: Biological and Industrial Significance (American Chemical Society, Washington, 1996).

    Google Scholar 

  2. W. G. Fisher and M. J. Sienko (1980). Inorg. Chem. 19, 39–43.

    Article  CAS  Google Scholar 

  3. M. Kockerling, D. Johrendt, and E. W. Finckh (1998). J. Am. Chem. Soc. 120, 12297–12302.

    Article  Google Scholar 

  4. Z. L. Liu, L. C. Cai, and X. L. Zhang (2014). J. Alloys Compd. 610, 472–477.

    Article  CAS  Google Scholar 

  5. Y. Liao, K.-S. Park, P. Singh, W. Li, and J. B. Goodenough (2014). J. Power Sources 245, 27–32.

    Article  CAS  Google Scholar 

  6. Y. Liao, K. S. Park, P. **ao, G. Henkelman, W. Li, and J. B. Goodenough (2013). Chem. Mater. 25, 1699–1705.

    Article  CAS  Google Scholar 

  7. W. M. R. Divigalpitiya, R. F. Frindt, and S. R. Morrison (1990). J. Phys. D 23, 966–970.

    Article  CAS  Google Scholar 

  8. C. Geantet, J. Afonso, M. Breysse, N. Allali, and M. Danot (1996). Catal. Today 28, 23–30.

    Article  CAS  Google Scholar 

  9. N. Allali, A. Leblanc, M. Danot, C. Geantet, M. Vrinat, and M. Breysse (1996). Catal. Today 27, 137–144.

    Article  CAS  Google Scholar 

  10. N. Allali, A.-M. Marie, M. Danot, C. Geantet, and M. Breysse (1995). J. Catal. 156, 279–289.

    Article  CAS  Google Scholar 

  11. M. Danot, J. Afonso, J. L. Portefaix, M. Breysse, and T. Des Courières (1991). Catal. Today 10, 629–643.

    Article  CAS  Google Scholar 

  12. V. Gaborit, N. Allali, M. Danot, C. Geantet, M. Cattenot, M. Breysse, and F. Diehl (2003). Catal. Today 78, 499–505.

    Article  CAS  Google Scholar 

  13. Y. Aray, D. Zambrano, M. H. Cornejo, E. V. Ludeña, P. Iza, A. B. Vidal, D. S. Coll, D. M. Jímenez, F. Henriquez, and C. Paredes (2014). J. Phys. Chem. C 118, 27823–27832.

    Article  CAS  Google Scholar 

  14. D. A. Lewis and C. N. Kenney (1981). Trans. Inst. Chem. Eng. 59, 186–195.

    CAS  Google Scholar 

  15. V. Gaborit, N. Allali, C. Geantet, M. Breysse, M. Vrinat, and M. Danot (2000). Catal. Today 57, 267–273.

    Article  CAS  Google Scholar 

  16. B. Wang, N. Wu, X. B. Zhang, X. Huang, Y. F. Zhang, W. K. Chen, and K. N. Ding (2013). J. Phys. Chem. A 117, 5632–5641.

    Article  CAS  Google Scholar 

  17. B. Wang, W. J. Chen, B. C. Zhao, Y. F. Zhang, and X. Huang (2010). J. Phys. Chem. A 114, 1964–1972.

    Article  CAS  Google Scholar 

  18. H. J. Zhai, B. Wang, X. Huang, and L. S. Wang (2009). J. Phys. Chem. A 113, 3866–3875.

    Article  CAS  Google Scholar 

  19. H. J. Zhai, B. Wang, X. Huang, and L. S. Wang (2009). J. Phys. Chem. A 113, 9804–9813.

    Article  CAS  Google Scholar 

  20. B. Wang, H. J. Zhai, X. Huang, and L. S. Wang (2008). J. Phys. Chem. A 112, 10962–10967.

    Article  CAS  Google Scholar 

  21. B. Liang, X. Wang, and L. Andrews (2009). J. Phys. Chem. A 113, 5375–5384.

    Article  CAS  Google Scholar 

  22. B. Liang, X. Wang, and L. Andrews (2009). J. Phys. Chem. A 113, 3336–3343.

    Article  CAS  Google Scholar 

  23. X. Wang, B. Liang, and L. Andrews (2009). Dalton Trans. 21, 4190–4198.

    Article  Google Scholar 

  24. S. Gemming, J. Tamuliene, G. Seifert, N. Bertram, Y. D. Kim, and G. Ganteför (2006). Appl. Phys. A 82, 161–166.

    Article  CAS  Google Scholar 

  25. S. Gemming, G. Seifert, N. Bertram, T. Fischer, M. Götz, and G. Ganteför (2009). Chem. Phys. Lett. 474, 127–131.

    Article  CAS  Google Scholar 

  26. Y. C. Zhao, J. Yuan, Z. G. Zhang, H. G. Xu, and W. Zheng (2011). Dalton Trans. 40, 2502–2508.

    Article  CAS  Google Scholar 

  27. S. G. He, Y. **e, Y. Guo, and E. Bernstein (2007). J. Chem. Phys. 126, 194315.

    Article  Google Scholar 

  28. G. E. Johnson, E. C. Tyo, and A. W. Castleman Jr (2008). Proc. Natl. Acad. Sci. USA. 105, 18108–18113.

    Article  CAS  Google Scholar 

  29. T. Waters, X. Huang, X. B. Wang, H. K. Woo, R. A. J. O’Hair, A. G. Wedd, and L. S. Wang (2006). J. Phys. Chem. A 110, 10737–10741.

    Article  CAS  Google Scholar 

  30. D. K. Böhme and H. Schwarz (2005). Angew. Chem Int. Ed. 44, 2336–2354.

    Article  Google Scholar 

  31. A. W. Castleman Jr (2011). Catal. Lett. 141, 1243–1253.

    Article  CAS  Google Scholar 

  32. B. Liang and L. Andrews (2002). J. Phys. Chem. A 106, 3738–3743.

    Article  CAS  Google Scholar 

  33. S. W. Yu, T. H. Li, L. F. Yao, X. M. Yang, and X. G. **e (2009). J. Mol. Struc. (Theochem) 901, 249–257.

    Article  CAS  Google Scholar 

  34. S. W. Yu, T. H. Li, X. M. Yang, L. Q. Yin, L. F. Yao, and X. G. **e (2009). Chin. Chem. Lett. 20, 755–758.

    Article  CAS  Google Scholar 

  35. I. Kretzschmar, D. Schröder, H. Schwarz, and P. B. Armentrout (2006). Int. J. Mass Spectrom. 249, 263–278.

    Article  Google Scholar 

  36. A. D. Becke (1993). J. Chem. Phys. 98, 1372–1377.

    Article  CAS  Google Scholar 

  37. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785–789.

    Article  CAS  Google Scholar 

  38. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch (1994). J. Phys. Chem. 98, 11623–11627.

    Article  CAS  Google Scholar 

  39. A. Schäfer, C. Huber, and R. Ahlrichs (1994). J. Chem. Phys. 100, 5829–5835.

    Article  Google Scholar 

  40. F. Weigend and R. Ahlrichs (2005). Phys. Chem. Chem. Phys. 7, 3297–3305.

    Article  CAS  Google Scholar 

  41. K. Eichkorn, F. Weigend, O. Treutler, and R. Ahlrichs (1997). Theor. Chem. Acc. 97, 119–124. The exponents (included those of the polarization functions) and contraction coefficients can be retrieved from the following web-site: https://bse.pnl.gov/bse/portal.

  42. D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss (1990). Theor. Chim. Acta. 77, 123–141. ECP parameters for Nb were obtained from the following web-site: https://bse.pnl.gov/bse/portal.

  43. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision D.01 (Gaussian, Inc., Wallingford, 2004).

  44. W. Küchle, M. Dolg, H. Stoll, and H. Preuss (1998) Pseudopotentials of the Stuttgart/Dresden Group 1998, Revision 11 August 1998. http://www.theochem.uni-stuttgart.de/pseudopotentiale.

  45. J. M. L. Martin and A. Sundermann (2001). J. Chem. Phys. 114, 3408–3420.

    Article  CAS  Google Scholar 

  46. T. H. Dunning Jr (1989). J. Chem. Phys. 90, 1007–1023.

    Article  CAS  Google Scholar 

  47. D. E. Woon and T. H. Dunning Jr (1993). J. Chem. Phys. 98, 1358–1371.

    Article  CAS  Google Scholar 

  48. T. H. Dunning, K. A. Peterson, and A. K. Wilson (2001). J. Chem. Phys. 114, 9244–9253.

    Article  CAS  Google Scholar 

  49. A. D. Becke (1988). Phys. Rev. A. 38, 3098–3100.

    Article  CAS  Google Scholar 

  50. J. P. Perdew (1986). Phys. Rev. B. 33, 8822–8824.

    Article  Google Scholar 

  51. G. D. Purvis III and R. J. Bartlett (1982). J. Chem. Phys. 76, 1910–1918.

    Article  CAS  Google Scholar 

  52. G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III (1988). J. Chem. Phys. 89, 7382–7387.

    Article  CAS  Google Scholar 

  53. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon (1989). Chem. Phys. Lett. 157, 479–483.

    Article  CAS  Google Scholar 

  54. J. D. Watts, J. Gauss, and R. J. Bartlett (1993). J. Chem. Phys. 98, 8718–8733.

    Article  CAS  Google Scholar 

  55. R. J. Bartlett and M. Musial (2007). Rev. Mod. Phys. 79, 291–352.

    Article  CAS  Google Scholar 

  56. H. J. Werner, P. J. Knowles, F. R. Manby, M. Schütz, P. Celani, G. Knizia, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. HamPel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. KöPPl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and A. Wolf, MOLPRO, version 2010.1, a package of ab initio programs; http://www.molpro.net.

  57. B. Y. Liang and L. Andrews (2002). J. Phys. Chem. A 106, 6945–6951.

    Article  CAS  Google Scholar 

  58. D. J. Tozer and N. C. Handy (1998). J. Chem. Phys. 109, 10180–10189.

    Article  CAS  Google Scholar 

  59. R. Dennington II, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell, and R. Gilliland, GaussView, Version 4.1.2, (Semichem Inc., Shawnee Mission, 2007).

  60. H. J. Zhai, B. Kiran, L. F. Cui, X. Li, D. A. Dixon, and L. S. Wang (2004). J. Am. Chem. Soc. 126, 16134–16141.

    Article  CAS  Google Scholar 

  61. M. Kaupp (2001). Angew. Chem. Int. Ed. 40, 3534–3565.

    Article  CAS  Google Scholar 

  62. J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer III, S. Nandi, and G. B. Ellison (2002). Chem. Rev. 102, 231–282.

    Article  CAS  Google Scholar 

  63. H. Q. Wang, H. F. Li, and X. Y. Kuang (2012). Phys. Chem. Chem. Phys. 14, 5272–5283.

    Article  CAS  Google Scholar 

  64. H. J. Zhai, X. Huang, T. Waters, X. B. Wang, R. A. J. O’Hair, A. G. Wedd, and L. S. Wang (2005). J. Phys. Chem. A 109, 10512–10520.

    Article  CAS  Google Scholar 

  65. X. B. Wang and L. S. Wang (1999). Nature 400, 245–248.

    Article  CAS  Google Scholar 

  66. X. B. Wang, J. B. Nicholas, and L. S. Wang (2000). J. Chem. Phys. 113, 653–661.

    Article  CAS  Google Scholar 

  67. L. S. Wang and X. B. Wang (2000). J. Phys. Chem. A 104, 1978–1990.

    Article  CAS  Google Scholar 

  68. L. S. Wang, C. F. Ding, X. B. Wang, and J. B. Nicholas (1998). Phys. Rev. Lett. 81, 2667–2670.

    Article  CAS  Google Scholar 

  69. A. I. Boldyrev and J. Simons (1994). J. Phys. Chem. 98, 2298–2300.

    Article  CAS  Google Scholar 

  70. S. C. Lee, J. Li, J. C. Mitchell, and R. H. Holm (1992). Inorg. Chem. 31, 4333–4338.

    Article  CAS  Google Scholar 

  71. E. Diemann and A. Müller (1973). Coord. Chem. Rev. 10, 79–122.

    Article  CAS  Google Scholar 

  72. A. C. Olson, J. M. Keith, E. R. Batista, K. S. Boland, S. R. Daly, S. A. Kozimor, M. M. MacInnes, R. L. Martin, and B. L. Scott (2014). Dalton Trans. 43, 17283–17295.

    Article  CAS  Google Scholar 

  73. N. Seeburrun, H. H. Abdallah, E. F. Archibong, and P. Ramasami (2014). Struct. Chem. 25, 755–766.

    Article  CAS  Google Scholar 

  74. S. Veliah, K.-H. **ang, R. Pandey, J. M. Recio, and J. M. Newsam (1998). J. Phys. Chem. B 102, 1126–1135.

    Article  CAS  Google Scholar 

  75. L. Rapoport, A. Moshkovich, V. Perfilyev, A. Laikhtman, I. Lapsker, L. Yadgarov, R. Rosentsveig, and R. Tenne (2012). Tribol. Lett. 45, 257–264.

    Article  CAS  Google Scholar 

  76. L. N. Ye, C. Z. Wu, W. Guo, and Y. **e (2006). Chem. Commun. 45, 4738–4740.

    Article  Google Scholar 

  77. J. Chen, N. Kuriyama, H. Yuan, H. T. Takeshita, and T. Sakai (2001). J. Am. Chem. Soc. 123, 11813–11814.

    Article  CAS  Google Scholar 

  78. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis (2010). Chem. Rev. 110, 6446–6473.

    Article  CAS  Google Scholar 

  79. C. Kisielowski, Q. M. Ramasse, L. P. Hansen, M. Brorson, A. Carlsson, A. M. Molenbroek, H. Topsøe, and S. Helveg (2010). Angew. Chem. Int. Ed. 49, 2708–2710.

    Article  CAS  Google Scholar 

  80. V. V. Ivanovskaya, A. Zobelli, A. Gloter, N. Brun, V. Serin, and C. Colliex (2008). Phys. Rev. B 78, 134104.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge supports from the National Natural Science Foundation of China (21301030, 21371034 and 21373048), the Natural Science Foundation of Fujian Province for Distinguished Young Investigator Grant (2013J06004) and Foundation of Fuzhou University (2012-XY-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2015_937_MOESM1_ESM.pdf

Alternative optimized structures for NbS 2−/−/0n (n = 3–5) at the B3LYP/Basis-I (Figs. S1–S3), the calculated VDEs for the ground states and selected low-lying isomers of NbS n (n = 3–5) (Table S1). Supplementary material 1 (PDF 3580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Li, QQ., Wang, JF. et al. Structures and Chemical Bonding in NbS 2−/−/0n (n = 3–5) Clusters: Effects of Sulfur Content and Charge States. J Clust Sci 27, 387–401 (2016). https://doi.org/10.1007/s10876-015-0937-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0937-z

Keywords

Navigation