Log in

Identification of Germline Non-coding Deletions in XIAP Gene Causing XIAP Deficiency Reveals a Key Promoter Sequence

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

X-linked inhibitor of apoptosis protein (XIAP) deficiency, also known as the X-linked lymphoproliferative syndrome of type 2 (XLP-2), is a rare immunodeficiency characterized by recurrent hemophagocytic lymphohistiocytosis, splenomegaly, and inflammatory bowel disease. Variants in XIAP including missense, non-sense, frameshift, and deletions of coding exons have been reported to cause XIAP deficiency. We studied three young boys with immunodeficiency displaying XLP-2-like clinical features. No genetic variation in the coding exons of XIAP was identified by whole-exome sequencing (WES), although the patients exhibited a complete loss of XIAP expression.

Methods

Targeted next-generation sequencing (NGS) of the entire locus of XIAP was performed on DNA samples from the three patients. Molecular investigations were assessed by gene reporter expression assays in HEK cells and CRISPR-Cas9 genome editing in primary T cells.

Results

NGS of XIAP identified three distinct non-coding deletions in the patients that were predicted to be driven by repetitive DNA sequences. These deletions share a common region of 839 bp that encompassed the first non-coding exon of XIAP and contained regulatory elements and marks specific of an active promoter. Moreover, we showed that among the 839 bp, the exon was transcriptionally active. Finally, deletion of the exon by CRISPR-Cas9 in primary cells reduced XIAP protein expression.

Conclusions

These results identify a key promoter sequence contained in the first non-coding exon of XIAP. Importantly, this study highlights that sequencing of the non-coding exons that are not currently captured by WES should be considered in the genetic diagnosis when no variation is found in coding exons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

All material and data are available on request.

Code Availability

All codes are available on request.

References

  1. Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, Soulas P, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444(7115):110–4.

    Article  CAS  PubMed  Google Scholar 

  2. Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, Decker B, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011;13(3):255–62.

    Article  PubMed  Google Scholar 

  3. Speckmann C, Ehl S. XIAP deficiency is a mendelian cause of late-onset IBD. Gut. 2014;63(6):1031–2.

    Article  PubMed  Google Scholar 

  4. Aguilar C, Lenoir C, Lambert N, Begue B, Brousse N, Canioni D, et al. Characterization of Crohn disease in X-linked inhibitor of apoptosis-deficient male patients and female symptomatic carriers. J Allergy Clin Immunol. 2014;134(5):1131-41 e9.

    Article  CAS  PubMed  Google Scholar 

  5. Ono S, Okano T, Hoshino A, Yanagimachi M, Hamamoto K, Nakazawa Y, et al. Hematopoietic stem cell transplantation for XIAP deficiency in Japan. J Clin Immunol. 2017;37(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  6. Chen RY, Li XZ, Lin Q, Zhu Y, Shen YY, Xu QY, et al. Epstein-Barr virus-related hemophagocytic lymphohistiocytosis complicated with coronary artery dilation and acute renal injury in a boy with a novel X-linked inhibitor of apoptosis protein (XIAP) variant: a case report. BMC Pediatr. 2020;20(1):456.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang X, Hoshino A, Taga T, Kunitsu T, Ikeda Y, Yasumi T, et al. A female patient with incomplete hemophagocytic lymphohistiocytosis caused by a heterozygous XIAP mutation associated with non-random X-chromosome inactivation skewed towards the wild-type XIAP allele. J Clin Immunol. 2015;35(3):244–8.

    Article  PubMed  Google Scholar 

  8. Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 2006;7(10):988–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yabal M, Muller N, Adler H, Knies N, Gross CJ, Damgaard RB, et al. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep. 2014;7(6):1796–808.

    Article  CAS  PubMed  Google Scholar 

  10. Krieg A, Correa RG, Garrison JB, Le Negrate G, Welsh K, Huang Z, et al. XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci U S A. 2009;106(34):14524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parackova Z, Milota T, Vrabcova P, Smetanova J, Svaton M, Freiberger T, et al. Novel XIAP mutation causing enhanced spontaneous apoptosis and disturbed NOD2 signalling in a patient with atypical adult-onset Crohn’s disease. Cell Death Dis. 2020;11(6):430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Damgaard RB, Nachbur U, Yabal M, Wong WW, Fiil BK, Kastirr M, et al. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol Cell. 2012;46(6):746–58.

    Article  CAS  PubMed  Google Scholar 

  13. Damgaard RB, Fiil BK, Speckmann C, Yabal M, zurStadt U, Bekker-Jensen S, et al. Disease-causing mutations in the XIAP BIR2 domain impair NOD2-dependent immune signalling. EMBO Mol Med. 2013;5(8):1278–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marsh RA, Madden L, Kitchen BJ, Mody R, McClimon B, Jordan MB, et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood. 2010;116(7):1079–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Filipovich AH, Zhang K, Snow AL, Marsh RA. X-linked lymphoproliferative syndromes: brothers or distant cousins? Blood. 2010;116(18):3398–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeissig Y, Petersen BS, Milutinovic S, Bosse E, Mayr G, Peuker K, et al. XIAP variants in male Crohn’s disease. Gut. 2015;64(1):66–76.

    Article  CAS  PubMed  Google Scholar 

  17. Latour S, Aguilar C. XIAP deficiency syndrome in humans. Semin Cell Dev Biol. 2015;39:115–23.

    Article  CAS  PubMed  Google Scholar 

  18. Davidson AE, Liskova P, Evans CJ, Dudakova L, Noskova L, Pontikos N, et al. Autosomal-dominant corneal endothelial dystrophies CHED1 and PPCD1 are allelic disorders caused by non-coding mutations in the promoter of OVOL2. Am J Hum Genet. 2016;98(1):75–89.

    Article  CAS  PubMed  Google Scholar 

  19. Wakabayashi A, Ulirsch JC, Ludwig LS, Fiorini C, Yasuda M, Choudhuri A, et al. Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders. Proc Natl Acad Sci U S A. 2016;113(16):4434–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thaventhiran JED, Lango Allen H, Burren OS, Rae W, Greene D, Staples E, et al. Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature. 2020;583(7814):90–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Turro E, Astle WJ, Megy K, Graf S, Greene D, Shamardina O, et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature. 2020;583(7814):96–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li J, Woods SL, Healey S, Beesley J, Chen X, Lee JS, et al. Point mutations in exon 1B of APC reveal gastric adenocarcinoma and proximal polyposis of the stomach as a familial adenomatous polyposis variant. Am J Hum Genet. 2016;98(5):830–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339(6122):959–61.

    Article  CAS  PubMed  Google Scholar 

  24. French JD, Edwards SL. The role of noncoding variants in heritable disease. Trends Genet. 2020;36(11):880–91.

    Article  CAS  PubMed  Google Scholar 

  25. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C, et al. Architecture of the human regulatory network derived from ENCODE data. Nature. 2012;489(7414):91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martin E, Palmic N, Sanquer S, Lenoir C, Hauck F, Mongellaz C, et al. CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature. 2014;510(7504):288–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Benyelles M, Episkopou H, O’Donohue MF, Kermasson L, Frange P, Poulain F, et al. Impaired telomere integrity and rRNA biogenesis in PARN-deficient patients and knock-out models. EMBO Mol Med. 2019;11(7):e10201.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Venot Q, Blanc T, Rabia SH, Berteloot L, Ladraa S, Duong JP, et al. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature. 2018;558(7711):540–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosain J, Oleaga-Quintas C, Deswarte C, Verdin H, Marot S, Syridou G, et al. A variety of Alu-mediated copy number variations can underlie IL-12Rbeta1 deficiency. J Clin Immunol. 2018;38(5):617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simonetti L, Bruque CD, Fernandez CS, Benavides-Mori B, Delea M, Kolomenski JE, et al. CYP21A2 mutation update: comprehensive analysis of databases and published genetic variants. Hum Mutat. 2018;39(1):5–22.

    Article  CAS  PubMed  Google Scholar 

  31. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Consortium EP, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816.

    Article  Google Scholar 

  33. Menoret S, De Cian A, Tesson L, Remy S, Usal C, Boule JB, et al. Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins. Sci Rep. 2015;5:14410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46(W1):W242–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aguilar C, Latour S. X-linked inhibitor of apoptosis protein deficiency: more than an X-linked lymphoproliferative syndrome. J Clin Immunol. 2015;35(4):331–8.

    Article  CAS  PubMed  Google Scholar 

  36. van Zelm MC, Geertsema C, Nieuwenhuis N, de Ridder D, Conley ME, Schiff C, et al. Gross deletions involving IGHM, BTK, or Artemis: a model for genomic lesions mediated by transposable elements. Am J Hum Genet. 2008;82(2):320–32.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Verdin H, D’Haene B, Beysen D, Novikova Y, Menten B, Sante T, et al. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain. PLoS Genet. 2013;9(3):e1003358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Casper J, Zweig AS, Villarreal C, Tyner C, Speir ML, Rosenbloom KR, et al. The UCSC genome browser database: 2018 update. Nucleic Acids Res. 2018;46(D1):D762–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Web Resources

Online Medelian Inheritance in Man, http://www.omim.org/

ENCODE data in the UCSC Genome Browser, https://genome.ucsc.edu/

RepeatMasker program, software package: Smit A., (RepeatMasker Open, 2013–2015), https://www.repeatmasker.org/faq.html/

Bioinfo-fr, Human genome repeated elements, Devailly G., (Bioinfo-fr, 2017), https://bioinfo-fr.net/

Human Gene Mutation Database, HGMD 2020.4, Human Gene Mutation Database—Cardiff University, http://www.hgmd.cf.ac.uk

Funding

This work was supported by grants from the Ligue Contre le Cancer-Equipe Labélisée (France; to S. L.), Institut National de la Santé et de la Recherche Médicale (France); exome sequencing was funded by the Rare Diseases Foundation (France; to S.L.), the Agence Nationale de Recherche (ANR, France) (ANR-18-CE15-0025–01 to S.L. and ANR-10-IAHU-01 to Institut Imagine), the Société Française de Lutte contre les Cancers et Leucémies de l’Enfant et de l’Adolescent, AREMIG (France; to S.L.), and the Fédération Enfants et Santé (France; to S.L.). S. L. is a senior scientist at the Centre National de la Recherche Scientifique (France). Z.S is supported by the Fondation ARC pour la recherche sur le Cancer France.

Agence Nationale de la Recherche,ANR-18-CE15-0025–01,sylvain latour

Author information

Authors and Affiliations

Authors

Contributions

Z.S., K.T., E.B., and C.B. designed, performed experiments, and analyzed the data. K.T., A.H., F. J-H, F.T., M.L.L., C.B., and C.L. performed experiments and analyzed the data. A.H., H.K., A.P., T.I., S.S, T.T., and M.Y. identified the patients, provided clinical, and analyzed the data. S.L. and Z.S. wrote the manuscript. S. L. designed and supervised the research.

Corresponding author

Correspondence to Sylvain Latour.

Ethics declarations

Ethics Approval

The study and protocols conform to the 1975 Declaration of Helsinki as well as to local legislation and ethical guidelines from the Comité de protection des personnes de l’Ile de France II and the French advisory committee on data processing in medical research.

Consent to Participate

Informed and written consent was obtained from donors, patients, and families of patients.

Consent for Publication

All authors consent for publication of the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4374 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sbihi, Z., Tanita, K., Bachelet, C. et al. Identification of Germline Non-coding Deletions in XIAP Gene Causing XIAP Deficiency Reveals a Key Promoter Sequence. J Clin Immunol 42, 559–571 (2022). https://doi.org/10.1007/s10875-021-01188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-021-01188-z

Keywords

Navigation